Skip to main content

Main menu

  • Home
  • Content
    • Current
      • JNMT Supplement
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine Technology
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine Technology

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • Watch or Listen to JNMT Podcast
  • Visit SNMMI on Facebook
  • Join SNMMI on LinkedIn
  • Follow SNMMI on Twitter
  • Subscribe to JNMT RSS feeds
OtherAI/Advanced Image Analysis

Re-Modelling 99m-Technetium Pertechnetate Thyroid Uptake; Statistical, Machine Learning and Deep Learning Approaches

Geoffrey M. Currie and Basit M. Iqbal
Journal of Nuclear Medicine Technology December 2021, jnmt.121.263081; DOI: https://doi.org/10.2967/jnmt.121.263081
Geoffrey M. Currie
1 Charles Sturt University, Australia;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Basit M. Iqbal
2 Gujranwala Institute of Nuclear Medicine & Radiotherapy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Article Information

jnmt.121.263081
DOI 
https://doi.org/10.2967/jnmt.121.263081
PubMed 
34876477

Published By 
Society of Nuclear Medicine
Print ISSN 
0091-4916
Online ISSN 
1535-5675
History 
  • Published online December 7, 2021.

Article Versions

  • You are currently viewing a previous version of this article (December 7, 2021 - 08:42).
  • View the most recent version of this article
Copyright & Usage 
Copyright © 2021 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

Author Information

  1. Geoffrey M. Currie1 and
  2. Basit M. Iqbal2
  1. 1 Charles Sturt University, Australia;
  2. 2 Gujranwala Institute of Nuclear Medicine & Radiotherapy
  1. For correspondence or reprints contact: Geoffrey M. Currie, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia. E-mail: gcurrie@csu.edu.au

Statistics from Altmetric.com

Cited By...

  • 6 Citations
  • Google Scholar

This article has been cited by the following articles in journals that are participating in Crossref Cited-by Linking.

  • The Use of Artificial Intelligence in the Diagnosis and Classification of Thyroid Nodules: An Update
    Maksymilian Ludwig, Bartłomiej Ludwig, Agnieszka Mikuła, Szymon Biernat, Jerzy Rudnicki, Krzysztof Kaliszewski
    Cancers 2023 15 3
  • Application of radiomics and machine learning to thyroid diseases in nuclear medicine: a systematic review
    Francesco Dondi, Roberto Gatta, Giorgio Treglia, Arnoldo Piccardo, Domenico Albano, Luca Camoni, Elisa Gatta, Maria Cavadini, Carlo Cappelli, Francesco Bertagna
    Reviews in Endocrine and Metabolic Disorders 2024 25 1
  • The transformational potential of molecular radiomics
    Geoffrey Currie, K Elizabeth Hawk, Eric Rohren
    Journal of Medical Radiation Sciences 2023 70 S2
  • Personalized Medicine Meets Artificial Intelligence
    Luca Tagliaferri, Bruno Fionda, Valeria Masiello, Frank-Andre Siebert, Rafael Martínez-Monge, Andrea Damiani
    2023
  • Study of Simultaneous Counting of Thyroid Uptake with Quantitative Analysis of Thyroid Scans
    Jung-Soo Kim, Geun-Woo Kim
    Journal of Radiological Science and Technology 2023 46 5
  • Insights in biomarkers complexity and routine clinical practice for the diagnosis of thyroid nodules and cancer
    Maria de Lurdes Godinho de Matos, Mafalda Pinto, Ana Gonçalves, Sule Canberk, Maria João Martins Bugalho, Paula Soares
    PeerJ 2025 13

Article usage

Article usage: December 2021 to April 2025

AbstractFullPdf
Dec 202161706
Jan 2022505014
Feb 202252609
Mar 2022546012
Apr 2022357010
May 202214802
Jun 202231047
Jul 202220233
Aug 202225766
Sep 202229034
Oct 202231932
Nov 202229710
Dec 202217400
Jan 202318655
Feb 202316198
Mar 202311624
Apr 20236604
May 2023136316
Jun 2023183924
Jul 2023184824
Aug 2023285327
Sep 2023337341
Oct 20233011431
Nov 20232914631
Dec 20233317829
Jan 20241919527
Feb 20243210926
Mar 2024229947
Apr 20243310859
May 20243218838
Jun 20242010336
Jul 20241411733
Aug 20241810858
Sep 20242110446
Oct 20243319238
Nov 20241911920
Dec 2024812036
Jan 2025149540
Feb 20252318729
Mar 20251312939
Apr 20254224784
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine Technology: 53 (1)
Journal of Nuclear Medicine Technology
Vol. 53, Issue 1
March 1, 2025
  • Table of Contents
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Re-Modelling 99m-Technetium Pertechnetate Thyroid Uptake; Statistical, Machine Learning and Deep Learning Approaches
(Your Name) has sent you a message from Journal of Nuclear Medicine Technology
(Your Name) thought you would like to see the Journal of Nuclear Medicine Technology web site.
Citation Tools
Re-Modelling 99m-Technetium Pertechnetate Thyroid Uptake; Statistical, Machine Learning and Deep Learning Approaches
Geoffrey M. Currie, Basit M. Iqbal
Journal of Nuclear Medicine Technology Dec 2021, jnmt.121.263081; DOI: 10.2967/jnmt.121.263081

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Re-Modelling 99m-Technetium Pertechnetate Thyroid Uptake; Statistical, Machine Learning and Deep Learning Approaches
Geoffrey M. Currie, Basit M. Iqbal
Journal of Nuclear Medicine Technology Dec 2021, jnmt.121.263081; DOI: 10.2967/jnmt.121.263081
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Its Time to Gather and Share
  • Google Scholar

Similar Articles

Keywords

  • endocrine
  • image processing
  • 99mTc thyroid uptake
  • deep learning
  • hyperthyroidism
  • machine learning
SNMMI

© 2025 SNMMI

Powered by HighWire