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Abstract 

Background: While normal ranges for 99mTc thyroid percentage uptake vary, the 

seemingly intuitive evaluation of thyroid function does not reflect the complexity of thyroid 

pathology and biochemical status. The emergence of artificial intelligence (AI) in nuclear 

medicine has driven problem solving associated with logic and reasoning that warrant re-

examination of established benchmarks in thyroid functional assessment.  

Method: There were 123 patients retrospectively analysed in the study sample comparing 

scintigraphic findings to grounded truth established through biochemistry status. 

Conventional statistical approaches were used in conjunction with an artificial neural 

network (ANN) to determine predictors of thyroid function from data features. A 

convolutional neural network (CNN) was also used to extract features from the input 

tensor (images).  

Results: Analysis was confounded by sub-clinical hyperthyroidism, primary 

hypothyroidism, sub-clinical hypothyroidism and T3 toxicosis. Binary accuracy for 

identifying hyperthyroidism was highest for thyroid uptake classification using a threshold 

of 4.5% (82.6%), followed by pooled physician 6interpretation with the aid of uptake 

values (82.3%). Visual evaluation without quantitative values reduced accuracy to 61.0% 

for pooled physician determinations and 61.4% classifying on the basis of thyroid gland 

intensity relative to salivary glands. The machine learning (ML) algorithm produced 84.6% 

accuracy, however, this included biochemistry features not available to the semantic 

analysis. The deep learning (DL) algorithm had an accuracy of 80.5% based on image 

inputs alone.  

Conclusion: Thyroid scintigraphy is useful in identifying hyperthyroid patients suitable for 

radioiodine therapy when using an appropriately validated cut-off for the patient 

population (4.5% in this population). ML ANN algorithms can be developed to improve 

accuracy as second readers systems when biochemistry results are available. DL CNN 

algorithms can be developed to improve accuracy in the absence of biochemistry results. 

ML and DL do not displace the role of the physician in thyroid scintigraphy but could be 

used as second reader systems to minimize errors and increase confidence.   

 

.  
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Introduction 

In 1967, Atkins and Richards (1) evaluated the potential role of 99m-technetium (99mTc) 

pertechnetate in evaluating thyroid function as an alternative to sodium iodide with 131-

iodine (131I) on the basis that 99mTc uptake in the thyroid reflects the gland’s trapping 

function. This landmark work utilized a probe detector rather than gamma camera imaging 

approach for the uptake calculation. A small number of hypothyroid patients were 

included and all had percentage uptakes below 0.5%. Only 2 of 15 hyperthyroid patients 

fell below 4% while 4 of 133 euthyroid patients had uptake above 4%. Thus, a cut-off for 

normality was set at 0.4% to 4.0% to provide 87% accuracy in hyperthyroidism, 97% 

accuracy in euthyroid, and 100% accuracy in hypothyroidism.  

 

Later work in 1973 by Maisey et al (2) utilized a gamma camera, pinhole collimation and 

interfaced computer to generate regions of interest for calculation of 99mTc pertechnetate 

uptake in the thyroid. Euthyroid patients ranged from 0.2% to 3.6% or 0.3% to 6.2% in the 

presence of a goitre, 2.8% to 8.8% for hyperthyroidism, and 0.1% to 0.3% for 

hypothyroidism to establish a normal range of 0.3% to 3.4%. More recently, 99mTc 

pertechnetate uptake in euthyroid was characterized in the range 0.4% to 1.7% in 47 

clinically normal patients (3). It is widely acknowledged that normal values change with 

geography and time, particularly in relation to iodine deficiency (4). While it is common 

for widespread use of international standards (0.5% to 4.5% for example), these values 

may not reflect either the technique used (probe versus gamma camera) or population 

characteristics (eg. iodine deficiency). In Namibia, investigators found the normal range 

to be 0.15% to 2.14% (4) although the study only included 76 patients and all were 

euthyroid. A UK study (5) used 60 euthyroid patients to estimate the local normal range 

as 0.2% to 2.0%.   

 

While normal ranges for percentage uptake vary, the method for calculation of thyroid 

function on 99mTc scintigraphy also varies (6). The seemingly intuitive evaluation of 

thyroid function has also referenced as a visual evaluation of thyroid activity relative to 

salivary gland activity (figure 1). This does not reflect the complexity of thyroid pathology 

and biochemical status. This simplification is intuitive when the bulk of patients are 
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euthyroid or hyperthyroid but fails to accommodate sub-clinical hyperthyroidism which 

can produce low thyroid accumulation of 99mTc, T3 toxicosis which can have high or low 

99mTc uptake, sub-clinical hypothyroidism which can have elevated or normal 99mTc 

accumulation and primary hypothyroidism which can have normal or elevated 99mTc 

accumulation. Thus, the accuracy of 99mTc uptake may be more dependent on the 

pathological cross section of patients than the technique itself. 

 

The emergence of artificial intelligence (AI) in nuclear medicine has driven problem 

solving associated with logic and reasoning (7,8). Developments in machine learning (ML) 

and deep learning (DL) provide valuable research tools, particularly for image 

segmentation and interpretation (9). The artificial neural network (ANN) provides the 

backbone for both ML and DL algorithms.  The ANN relies on input of specific data 

(features) and is generally referred to a ML. More complex ANNs can produce deep 

architectures (high number of layers and nodes) and refers to DL. Deep ANNs are 

generally associated, in medical imaging, with convolutional neural networks (CNN) that 

use convolution and pooling layers so features can be extracted from input tensors 

(images) (9,10). While there have been historical uses of neural networks for classification 

of thyroid based ophthalmologic conditions and for evaluation of invitro laboratory tests, 

it has only been recently that DL approaches have been applied to thyroid scintigraphy. 

Using single photon emission computed tomography (SPECT) thyroid scintigraphy, three 

DL models based on AlexNet, VGGNet and ResNet architectures trained on 1430 clinical 

studies were modeled and compared to residents in nuclear medicine (11). While the 

investigators concluded that DL approaches perform well in thyroid scintigraphy, the role 

might be limited to assisting the physician in training more so than any specific clinical 

utility. The algorithms marginally out-performed first year residents but did not perform as 

well as second year residents, let alone experienced physicians. Concurrent use of the 

DL approaches improved the performance of residents in the order of 5% and reduced 

reporting time. Nonetheless, there is a need to explore potential clinical and research 

applications and the less complex nature of planar thyroid scintigraphy may be better 

suited to DL approaches. The performance of these algorithms was enhanced by a 

sanitized data set with the case population comprising normal (175), Grave’s disease 
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(834) or subacute thyroiditis (421). The three DL architectures reported a high degree of 

recall for subacute thyroiditis, poor accuracy for normality and moderate accuracy for 

Grave’s disease (11).  

 

The aim of this investigation was to correlate each of the following with biochemical status 

and compare performance:  

1. the percentage uptake of 99mTc,  

2. visual correlation of thyroid activity in the thyroid,  

3. machine learning (ML) algorithms using an artificial neural network (ANN) and  

4. deep learning (DL) approaches using a convolutional neural network (CNN).  

 

Method 

There were 123 patients retrospectively analysed in the study sample (90.2% female) 

with a mean age of 35 years (range of 10-70 years). The mean intravenous dose of 

99mTc was 153.4 MBq. The 99mTc based thyroid uptake was determined using 

background corrected thyroid regions of interest and a measured standard. All 

calculations were decay corrected and accounted for residual dose in the syringe post 

injection. Image features extracted included both background corrected and non-

corrected total thyroid, left side and right side area (cm2), counts and counts per pixel. 

The ratio of right to left lobe area (cm2), counts and counts per pixel was also determined 

with and without background correction. Additionally, thyroid to background for total 

thyroid, right lobe and left lobe were determined (trapping index). The dose relative to the 

total counts was also calculated and visual classification of thyroid activity relative to the 

salivary glands was recorded. Biochemical features included the free T4 (pmol/L), free 

T3 (pmol/L) and TSH (μIU/mL). The biochemical status of the patient was determined 

(table 1) which was further stratified as ternary (hypothyroid, euthyroid or hyperthyroid) 

and binary (hyperthyroid or not hyperthyroid) (1-6,12,13). Other imaging features were 

also recorded (eg. hot or cold nodule, multi-nodular goitre etc). Only 96 patients had both 

imaging features and biochemical status. The investigation was approved by institutional 

ethics committee. 
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Conventional statistical analysis was undertaken using JMP 15.2.1 (SAS Institute) 

software. The statistical significance was calculated using Chi-Square analysis for 

nominal data and Student’s t test for continuous data. The Pearson Chi-Square (X2) test 

was employed for categorical data with normal distribution and the Likelihood Ratio Chi-

Square (G2) test for categorical data without normal distribution. The F test analysis of 

variances was used to determine statistically significant differences within grouped data. 

A P value less than 0.05 was considered significant. Inter-observer correlation was 

evaluated with Chi-Square analysis and inter-observer reliability measured using Cohen’s 

Kappa coefficient.  

 

The data was also evaluated using an ANN (Neural Analyser version 2.9.5). There were 

42 input variables in 123 patients (instances) using a binary classification of hyperthyroid 

or euthyroid. A 50:25:25 split of 96 valid instances (excluded missing biochemistry data) 

was used for training, selection and testing. The initial network architecture included 16 

scaling layer inputs, 3 hidden layers of 6, 4 and 3 nodes respectively, using a logistic 

activation function (defines the output of each node based on its input) for a single 

probabilistic layer (binary). The weighted squared error method was used to determine 

the loss index and the neural parameters norm was used for the regularisation method. 

A Quasi-Newton training method was employed using gradient information to estimate 

the inverse Hessian for each iteration of the algorithm (no second derivatives). The loss 

function associated with the training phase estimates the error associated with the data 

the neural network observes. 

 

The single anterior neck image for the 96 patients was evaluated by three independent 

expert physicians blinded to other image and biochemical features. Each scan was 

recorded based on visual appearances as euthyroid, hypothyroid or hyperthyroid. On 

completion of the stratification, each physician re-evaluated the ternary status with the 

visual inspection supplemented by the calculated thyroid uptake (%). Physician rating 

was determined by majority group consensus. 
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Individual, non-annotated, anterior neck images representative of each patient was 

evaluated using a CNN classifier (MatLab R2020b Deep Learning Toolkit Deep Network 

Designer App). Given the lack of discriminatory power of either visual evaluation or thyroid 

uptake quantitation using various cut-off values to identify hypothyroidism, the CNN 

classifier was designed to identify hyperthyroidism or not hyperthyroidism (euthyroid and 

hypothyroid). Given the lack of complexity in the image data, the architecture used for the 

CNN was initially modelled on a binary version of AlexNet with 25 layers but optimised 

using a model that resembled the VGG-19 CNN architecture with a binary output and 30 

layers (table 2 and figure 2). All patient files were trained and validated thrice (70:30 data 

random split) for each of three image types; white on black greyscale, black on white 

greyscale, and the magnitude spectrum of the Fourier transformation of each image 

(figure 3). Specific parameters included an ADAM (adaptive movement estimation) 

stochastic gradient descent optimiser algorithm, and initial learn rate of 0.001, a maximum 

of 50 Epochs (1 Epoch = 1 iteration) and randomisation with each Epoch.  

 

Situation analysis was undertaken using the confusion matrix for classifier prediction 

including true positives (TPs), false positives (FPs), true negatives (TNs), and false 

negatives (FNs). A number of performance indicators can be gleaned from the confusion 

matrix including:   

• Precision = TPs / (TPs + FPs) 

• Recall = TPs / (TPs + FNs) 

• Accuracy = (TPs + TNs) / (TPs + TNs + FPs + TNs) 

• F1-score = 2 × TPs / (2 × TPs + FPs + FNs) 

 

Results 

Statistical Analysis 

For the 123 patients the mean thyroid uptake was 4.4% (95% CI 3.3-5.5%) with a median 

of 2.2% (table 3). Among the visual findings, 9 patients had increased uptake associated 

with primary hypothyroidism, 22 increased uptake for Grave’s disease, 9 multinodular 

goitres and 2 nodular thyroids, 28 normal morphology, 3 goitres, 11 had reduced or 

absent uptake, 7 had autonomous glands with contralateral suppression (6 on the right), 
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there were 24 cold nodules (16 on the right), 8 hot nodules (4 on the right). Table 4 

summarises other key demographic data.  

 
The mean age of hypothyroid patients (48.0 years) was statistically higher than for 

biochemically euthyroid patients (33.7 years) (P=0.041) but not against hyperthyroid 

patients (36.7 years). There was also a weak positive correlation between age and thyroid 

size (P<0.001; R2=0.117). No other statistically significant relationships were noted for 

patient age. Men demonstrated a statistically higher mean thyroid area (48.5 cm2) than 

women (32.2 cm2) (P=0.003). There was also a statistically significant difference in the 

biochemical status (P=0.019) with a disproportionately high representation of 

hyperthyroidism for males and lower euthyroid rate. Given then lower representation of 

males in the thyroid scan population, this observation may reflect lower presentation rates 

for males in the absence of markedly abnormal thyroid function driving more pressing 

symptoms. No other statistically significant relationships were noted for patient gender or 

patient dose (MBq).   

 

There was no statistically significant correlation with right lobe to left lobe ratio (P=0.672), 

thyroid area (P=0.166) or background CPP (P=0.416). The increase in thyroid uptake 

associated with increasing total counts (P<0.001; R2=0.458) and total CPP (P<0.001; 

R2=0.356) were expected. There was also statistically significant relationships between 

increasing thyroid uptake and increasing thyroid to background ratios (P<0.001; 

R2=0.376). The mean thyroid uptake was statistically higher (P<0.001) when the scan 

appearance showed, relative to thyroid appearance, no salivary activity (9.1%) than for 

faint thyroid activity (2.5%), less than thyroid activity (1.7%), equal to thyroid activity 

(1.1%) and greater than thyroid activity (0.4%). A positive correlation between thyroid 

uptake and both free T4 (P<0.001; R2=0.351) and free T3 (P<0.001; R2=0.365) was 

noted, however, no correlation was noted between thyroid uptake and TSH (P=0.695; 

R2=0.002). 

 

Biochemical status demonstrated a statistically significant difference (P<0.001) for the 

mean thyroid uptake stratified as hyperthyroid (9.5% with 95% CI 7.1-12.0%), hypothyroid 
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(4.0% with 95% CI 1.3-6.7%) and euthyroid (2.5% with 95% CI 0.9-4.2%). Hypothyroid 

studies had a higher mean thyroid uptake than euthyroid because of the primary 

hypothyroidism cases. Excluding primary hypothyroidism, there is no statistically 

significant difference in thyroid uptake between hypothyroid and euthyroid, or with sub 

clinical hyperthyroid and suppressed hyperthyroid. While 4.5% is a cut-off that is 100% 

sensitivity for standard hyperthyroidism, clinically hyperthyroid with suppression and sub 

clinical hyperthyroidism (both biochemically) are not identified by this normal range. 

 

The optimised cut-offs for thyroid uptake against biochemical status was 0.45% to 4.5% 

although the lower cut-off is a poor discriminator for hypothyroidism against euthyroid. 

For biochemical hyperthyroidism, 70.8% of cases had an uptake greater than 4.5% while 

29.3% fell below 4.5%. 100% of those below 4.5% were biochemically subclinical 

hyperthyroidism or T3 toxicosis. 100% of “true” hyperthyroidism cases biochemically had 

uptake above 4.5%. Conversely, 27.8% of hypothyroidism cases had uptakes above 

4.5%. There were no (zero) hypothyroidism cases that had uptake values below the 

0.45% cut-off (all values below this were hyperthyroid or euthyroid biochemically). In the 

biochemically euthyroid range, only 6% had an uptake above 4.5% and 2% below 0.45%. 

 

Using the ternary classification, a thyroid uptake above 4.5% had a sensitivity of 70.8% 

for detecting hyperthyroidism and a specificity of 88.2%. A thyroid uptake below 0.45% 

had a sensitivity for hypothyroidism of 0% and specificity of 95.9% (figure 4, left). A 

broader biochemical classification of hyperthyroidism saw the sensitivity of the 4.5% cut-

off reach 100% with specificity of 88.2% (figure 4, right). 

 

Based on the ternary biochemical status, there was a statistically higher thyroid area for 

hyperthyroidism (40.7 cm2) than hypothyroidism (29.5 cm2) and euthyroid (33.0 cm2) 

(P=0.049). With reference to figure 1, scintigraphic appearances of thyroid activity relative 

to salivary gland activity correctly identified 70.3% of hyperthyroid studies, 0% of 

hypothyroid studies and 62.7% of euthyroid studies (table 5). Excluding sub-clinical 

hyperthyroidism and T3 toxicosis, 94.1% of hyperthyroidism studies were identified using 
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the visual criteria. Table 5 also provides an outline of true positive rate (recall) for each 

set of cut-off values against the biochemical status. 

 

Machine Learning 

There were 42 input variables in 96 patients (instances) using a binary classification of 

hyperthyroid or euthyroid. The heat map / correlation matrix identified a number of 

redundant variables and the highest correlation scores associated with TSH (0.888), 

appearance of salivary glands on scans (0.627), free T4 (0.575), percentage uptake 

(0.501) and free T3 (0.491); consistent with the conventional statistical analysis. The 

network architecture included 16 scaling layer inputs, 3 hidden layers of 6, 4 and 3 nodes 

respectively. The initial value of the training loss was 1.5473, and the final value after 105 

iterations is 0.0172. The initial value of the selection loss was 1.5570, and the final value 

after 105 iterations is 1.1895.  

 

A growing inputs method was used to calculate the correlation for every input against 

each output in the data set. Beginning with the most highly correlated inputs, 

progressively decreasing correlated inputs were added to the network until the selection 

loss increased. The final architecture of the neural network reflects the optimised subset 

of inputs with the lowest selection loss. In this case, the selection loss and the training 

loss identified the optimal number of inputs to be 4 with a training loss optimised at 0.0298 

and the selection loss of less than 0.0001. The final architecture was 4 scaling layer 

inputs, 3 hidden layers of 6, 4 and 1 nodes respectively, unscaling layer and a single 

binary probabilistic layer (figure 5).  

 

A number of metrics were employed to test the final architecture using a subset of the 

original patient data. Receiver operator characteristics (ROC) analysis demonstrated an 

area under the curve (AUC) of 0.933. This correlates with a sensitivity of 100%, a 

specificity of 80% and a classification accuracy of 0.846. This was consistent with scores 

of 0.60 for precision, 0.75 for F1 score (harmonic mean of sensitivity and precision), 0.693 

for Matthew’s correlation (correlation between targets and outputs), and 0.8 for Youden’s 

index (probability of a correct decision as opposed to guessing). The cumulative gain 
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analysis demonstrates the benefit of using the developed model over a random guess. 

The positive cumulative gain shows the percentage of positive instances found (Y-axis) 

against the percentage of population (X-axis). Similarly, the negative cumulative gain 

shows the percentage of the negative instances found against the percentage of 

population. The straight line represents a random classifier. The broader the separation, 

the better the predictive model (figure 6). Since the instances ratio provides maximum 

separation (maximised percentage of positive and negative instances), the instances ratio 

0.40 has a maximum gain score of 0.8. Specifically, but individually, hyperthyroidism is 

predicted by a 99mTc uptake value over 5.7%, free T4 below 20 or above 34 pmol/L, free 

T3 above 9.8 pmol/L and TSH less than 5.5 μIU/mL. In combination, these scaled and 

weighted input features of the neural network can be expressed mathematically 

enhancing the collective predictive capability. 

 

Deep Learning 

Preliminary network development demonstrated over-fitting beyond 30 iterations 

(Epochs) and, therefore, the maximum Epoch number was re-set to 30. The results of the 

triplicated training and validation passes are summarised in table 6. The variations in 

validation accuracy reflect the smaller dataset and the random assignment of cases to 

training and validation. No statistically significant differences (grouped F test) were noted 

between training or validation accuracy for different types of input tensors (P=0.161 for 

training accuracy and P=0.531 for validation accuracy) despite the higher accuracy for 

white on black and the lower accuracy for the magnitude spectrum. A direct comparison 

of white on black against the magnitude spectrum showed P=0.068 for training accuracy 

and P=0.280 for validation accuracy). 

 

Discussion 

While thyroid scintigraphy is a well-established technique for the assessment of thyroid 

function, there is variable opinion on the role in identifying low thyroid uptake compared 

to high thyroid uptake to guide radionuclide therapy. Thyroid scintigraphy is useful in the 

evaluation of hyperthyroidism to differentiate causes and guide therapy (14). While the 

specific scintigraphic patterns associated with thyroid pathology do not easily differentiate 
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biochemical status of the patient (figure 7), scintigraphic imaging does provide useful 

information to identify patients suitable for radioiodine therapy (14). Despite being in 

widespread use for the purpose internationally, 99mTc-pertechnetate based thyroid 

uptake is not considered suitable in some circles for guiding therapeutic dosage of 

radioiodine (14). Consistent with the observations of this study, scintigraphy has a limited 

role in hypothyroidism (15). 

 

The challenges and limitations of thyroid scintigraphy are highlighted by poor agreement 

of physician interpretation. It should be noted that the physician interpretation is not under 

normal conditions with the exclusion of patient history and biochemistry results. For the 

purpose of this study, however, the constrained interpretation provides a useful 

benchmark. Using the thyroid uptake cut-off of 0.45-4.5%, there was only 63.5% 

agreement with physician interpretation  and utilizing the salivary gland appearance had 

an agreement of just 53.1% with the physician interpretation. Agreement between 

physicians was not strong with a range of 59.4% to 86.5% and the agreement with 

biochemistry grounded truth ranged from 42.7% to 68.8%. This, combined with the poor 

prediction utility of the salivary gland appearance contradicts the simplicity of thyroid 

imaging depicted in figure 1.  

 

Using the ternary classification of euthyroid, hyperthyroid and hypothyroid, a thyroid 

uptake above 4.5% had a sensitivity of 70.8% for detecting hyperthyroidism and a 

specificity of 88.2%. A thyroid uptake below 0.45% had a sensitivity for hypothyroidism of 

0% and specificity of 95.9%. Specific biochemical classification of hyperthyroidism that 

excluded T3 toxicosis and sub-clinical hyperthyroidism improved sensitivity of the 4.5% 

cut-off to 100% with specificity of 88.2%. This highlights the value of thyroid uptake with 

a cut-off of 4.5% in identifying patients suitable for radioiodine therapy. Given this is the 

primary goal and the limited role of scintigraphy in hypothyroidism of the adult population, 

a binary (hyperthyroidism or not hyperthyroidism) provides a more suitable evaluation. 

The value of an appropriate thyroid uptake cut-off is highlighted in table 5 where, for this 

population, binary accuracy was highest for 4.5% (82.6%) and physician interpretation 

augmented by the uptake value (82.3%), and poor for salivary gland appearance alone 
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(59.4%) and blind physician interpretation (61.0%). Indeed, the value and accuracy of 

4.5% as the cut-off is reinforced by the similarity in physician interpretation with and 

without the uptake augmented information.  

 

While ML was able to demonstrate improved accuracy to 100%, the algorithm relied on 

biochemistry not available for physician interpretation. Indeed, the grounded truth was 

reliant on the additional value of biochemistry insights with physician insights. In the 

absence of availability of biochemistry results, the ML algorithm is reliant on uptake alone. 

Conversely, the physician interpretation would improve substantially with the additional 

insights from biochemistry. In this study, regardless of the apparent performance results, 

ML augmentation only outperforms physician interpretation because the physician is 

blinded to the biochemistry results available for the ML algorithm. Nonetheless, the role 

of ML is not and should not be to displace physician reporting but rather to improve 

accuracy by eliminating error. In this instance, the ML algorithm has been shown to be an 

accurate second reader system that could be automated with minimal cost and resources 

to identify hyperthyroid patients suitable for radioiodine therapy.   

 

In contrast to the success of ML algorithm development, the DL CNN performed poorer 

than both the 4.5% cut-off discriminator and the uptake augmented physician 

interpretation. The best results were achieved using the white on black images (80.5%). 

While this represents only a marginal decrease in performance compared to uptake alone 

(82.6%) and physician interpretation (82.3%), it should be kept in mind that the CNN was 

only trained on a single anterior neck image. The CNN did not have inputs for either the 

thyroid uptake percentage or the biochemistry results. As a result, the comparative 

performance should be considered the physician rating without uptake values. In this 

regard, the 80.5% binary accuracy of the CNN was superior to the physician interpretation 

(61.0%) and the visual classification against salivary gland appearance (61.5%). While 

this does not suggest displacement of physician interpretation, it does indicate that 

accuracy of physician reporting could be improved using the CNN algorithm in 

circumstances where biochemistry results are not available.      
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Conclusion 

Thyroid scintigraphy is useful in identifying hyperthyroid patients suitable for radioiodine 

therapy. Physician interpretation relies on an accurate thyroid function assessment 

(uptake) and an appropriately validated cut-off for the patient population (4.5% in this 

population). An inappropriate cut-off significantly undermines accuracy. ML ANN 

algorithms can be developed to improve accuracy as second readers systems when 

biochemistry results are available. DL CNN algorithms can be developed to improve 

accuracy in the absence of biochemistry results. ML and DL do not displace the role of 

the physician in thyroid scintigraphy but could be used as second reader systems to 

minimize errors and increase confidence.   
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Key Points 

Question: Can ML and DL approaches improve semantic evaluation of thyroid 

scintigraphy and uptake in hyperthyroidism?  

Pertinent findings: ML algorithms can be developed to improve accuracy as second 

readers systems when biochemistry results are available. DL CNN algorithms can be 

developed to improve accuracy in the absence of biochemistry results.  

Implications for patient care:  ML and DL do not displace the role of the physician in thyroid 

scintigraphy but could be used as second reader systems to minimize errors and increase 

confidence.   
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Tables 

 

Table 1: Biochemical stratification of patient studies and findings (1-6,12,13). 

Free T3 

(2-7 
pmol/L) 

Free T4 

(12-30 
pmol/L) 

TSH 

(0.45-4.5 
μIU/mL) 

Biochemical 
Status 

99mTc 
uptake 

(%) 

Comment on uptake 
normal range 

High High Low Hyperthyroidism > 4.5 0% false negative rate 

Normal Normal Low Subclinical 
hyperthyroidism 

< 4.5 
including 
< 0.45 or 
absent 

0% true positive, 
comprised false 
negative or false 
positive 
hypothyroidism 

High Normal Low T3 toxicosis > 4.5 or < 
0.45 

False positive 
hypothyroidism  

Normal High Low Thyroiditis  No cases 

Low Low Low Secondary 
hypothyroidism 

 No cases 

Normal Normal High Subclinical 
hypothyroidism 

> 0.45 but 
< 4.5 

100% false negative 

Low or 
normal 

Low High Primary 
hypothyroidism 

> 0.45 and 
in over 
50% of 
cases > 

4.5 

100% false negative  

Normal Normal Normal Euthyroid < 4.5% 9% false positive rate 
(6% hyperthyroid, 3% 
hypothyroid) 
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Table 2: CNN architecture, activations and parameters. 

Layer Name Activations Parameters 

1 Tensor Input Layer [725,725,3]  

2 2D Convolution Layer [239,239,64] Weights [11,11,3,64], Bias [1,1,64] 

3 Batch Normalization [239,239,64] Offset and scale [1,1,64] 

4 ReLU Layer [239,239,64]  

5 Max Pooling Layer [119,119,64] Size [3,3], Stride [2,2], Padding [0,0,0,0] 

6 2D Convolution Layer [40,40,128] Weights 5,5,64,128], Bias [1,1,128] 

7 Batch Normalization [40,40,128] Offset and scale [1,1,128] 

8 ReLU Layer [40,40,128]  

9 Max Pooling Layer [19,19,128] Size [3,3], Stride [2,2], Padding [0,0,0,0] 

10 2D Convolution Layer [19,19,256] Weights [3,3,128,256], Bias [1,1,256] 

11 Batch Normalization [19,19,256] Offset and scale [1,1,256] 

12 ReLU Layer [19,19,256]  

13 Max Pooling Layer [9,9,256] Size [3,3], Stride [2,2], Padding [0,0,0,0] 

14 2D Convolution Layer [9,9,192] Weights [3,3,256,192], Bias [1,1,192] 

15 Batch Normalization [9,9,192] Offset and scale [1,1,192] 

16 ReLU Layer [9,9,192]  

17 Max Pooling Layer [4,4,192] Size [3,3], Stride [2,2], Padding [0,0,0,0] 

18 2D Convolution Layer [4,4,192] Weights [3,3,256,192], Bias [1,1,192] 

19 Batch Normalization [4,4,192] Offset and scale [1,1,192] 

20 ReLU Layer [4,4,192]  

21 Max Pooling Layer [1,1,192] Size [3,3], Stride [2,2], Padding [0,0,0,0] 

22 Fully Connected Layer [1,1,192] Weights [192,192], Bias [192,1] 

23 ReLU Layer [1,1,192]  

24 Dropout Layer [1,1,192] 0.5 

25 Fully Connected Layer [1,1,86] Weights [86,192], Bias [86,1] 

26 ReLU Layer [1,1,86]  

27 Dropout Layer [1,1,86] 0.5 

28 Fully Connected Layer [1,1,2] Weights [2,86], Bias [2,1] 

29 Softmax Layer [1,1,2]  

30 Classification Layer  Cross entropy loss function 
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Table 3: Summary of ternary classification of thyroid function based on various published 
normal ranges. 
 

Normal range Euthyroid Hyperthyroid Hypothyroid Reference 

0.45-4.5% 67.5% 26.8% 7.7% 6 

0.4-1.7% 35.0% 61.0% 4.0% 3 

0.4-4.0% 65.0% 31.0% 4.0% 4 

0.3-3.4% 57.7% 38.2% 4.1% 2 

0.2-2.0% 43.1% 52.8% 4.1% 5 

Biochemical 
status 

53.1% 27.1% 19.8%* 11 

Salivary 
classification 

44.8% 50.0% 5.2% - 

Physician visual 
rating 

51.0% 43.8% 5.2% - 

Physician rating 
with uptake value 

64.6% 29.2% 6.3% - 

*15.6% were hypothyroid without suppression of uptake (2.1% autonomous, 2.1% 
secondary hypothyroidism, 11.5% primary hypothyroidism, 4.2% subclinical 
hypothyroidism).  
 

  



22 
 

Table 4: Summary of key variables. 
 

 Mean 95% CI 

Right lobe activity to left lobe total count ratio 1.5 1.03-2.02 

Right lobe activity to left lobe CPP ratio 1.29 0.98-1.60 

Area  33.8 cm2 31.1-36.5 

Size right 3092 pixels 2848-3340 

Size left 2937 pixels 2662-3212 

Thyroid : background ratio 4.06 3.43-4.69 

Right  4.01 CPP 3.49-4.52 

Left  4.08 CPP 3.28-4.89 

Dose to total counts ratio 4.85 3.44-6.26 

FT4 21.1 pmol/L 18.1-24.2 

FT3 7.1 pmol/L 5.1-9.1 

TSH 4.2 pmol/L 2.3-6.1 
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Table 5: Summary of ternary classification of thyroid function based on recall against 
biochemical status. Accuracy is also provided for binary classification. 
 

Normal range Euthyroid Hyperthyroid (*) Hypothyroid Accuracy** 

0.45-4.5% 71.4% 66.6% (100%) 0% 82.6% 

0.4-1.7% 49.0% 74.1% (94.1%) 0% 51.0% 

0.4-4.0% 86.3% 63.0% (94.1%) 0% 77.1% 

0.3-3.4% 74.5% 63.0% (94.1%) 0% 68.8% 

0.2-2.0% 58.8% 74.1% (94.1%) 0% 59.4% 

Salivary 
classification 

62.7% 70.3% (94.1%) 0% 61.4% 

Physician rating  72.5% 63.0% (89.5%) 0% 61.0% 

Physician rating 
with uptake 

88.2% 70.3% (100%) 0% 82.3% 

*excluding sub-clinical hyperthyroidism and T3 toxicosis.  
**binary accuracy for reference to table 6 
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Table 6: Summary of triplicate training and validation binary results (hyperthyroid or not 

hyperthyroid) for the 30-layer CNN architecture. The corresponding binary accuracies of 

the best performing thyroid uptake cut-offs, visual classification against salivary activity 

relative to thyroid activity, and physician rating are included for comparison. 

 

 

 

  

Input tensor Training 
accuracy 

Training 
loss 

Validation 
accuracy 

Validation 
loss 

Mean validation 
accuracy 

White on black 82.1% 0.420 75.9% 0.536 

80.5% White on black 94.0% 0.225 79.3% 0.602 

White on black 91.0% 0.218 86.2% 0.414 

Black on white 83.6% 0.383 82.8% 0.405 

78.2% Black on white 80.6% 0.452 72.4% 0.544 

Black on white 91.0% 0.232 79.3% 0.690 

Magnitude spectrum 76.1% 0.459 75.9% 0.530 

75.9% Magnitude spectrum 74.6% 0.508 72.4% 0.542 

Magnitude spectrum 85.1% 0.306 79.3% 0.380 

Mean 84.2% 0.356 78.2% 0.516  

      

Initial 25-layer CNN     69.0% 

      

Conventional 
metrics 

    Binary  

accuracy 

Normal cut-off 4.5%     82.6% 

Normal cut-off 4.0%     77.1% 

Salivary classification     61.5% 

Physician rating     61.0% 

Physician rating with 
uptake 

    82.3% 
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Figure 1: Intuitive, but sometimes inaccurate, visual evaluation of thyroid status relative 
to salivary gland activity. Left with salivary gland activity exceeding thyroid gland activity 
suggests hypothyroidism. Middle with salivary gland activity and thyroid gland activity 
being similar (within the same scale) suggests euthyroid. Right with salivary gland activity 
not apparent relative to thyroid activity suggests hyperthyroid. All images are 99mTc 
pertechnetate using high resolution, parallel hole imaging. 
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Figure 2: CNN architecture. 
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Figure 3: Three example patients (top, middle and bottom) with each of black on white 

(left), white on black (centre), and magnitude spectrum from Fourier transformation (right) 

used as inputs for the CNN. 
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Figure 4: Left; ternary biochemical status classification against thyroid uptake. Right; 
broader biochemical status classification against thyroid uptake. The horizontal line 
represents overall mean while the diamonds represent the class mean and 95% 
confidence intervals.  
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Figure 5: Final architecture of the trained and validated neural network. 
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Figure 6: The cumulative gain chart demonstrating maximum separation of positive and 

negative curves to provide a cumulative gain score of 0.8 and instances ratio of 0.4 (black 

dashed arrow). 
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Figure 7: Various scintigraphic appearances of thyroid pathology using parallel hole (high 
resolution) collimation and 99mTc pertechnetate. 
 

 


