Skip to main content

Main menu

  • Home
  • Content
    • Current
      • JNMT Supplement
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine Technology
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Nuclear Medicine Technology

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • Watch or Listen to JNMT Podcast
  • Visit SNMMI on Facebook
  • Join SNMMI on LinkedIn
  • Follow SNMMI on Twitter
  • Subscribe to JNMT RSS feeds
Research ArticleClinical Investigation

Patient Weight–Based Acquisition Protocols to Optimize18F-FDG PET/CT Image Quality

Akio Nagaki, Masahisa Onoguchi and Norikazu Matsutomo
Journal of Nuclear Medicine Technology May 2011, jnmt.110.081661; DOI: https://doi.org/10.2967/jnmt.110.081661
Akio Nagaki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masahisa Onoguchi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Norikazu Matsutomo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The choice of injected dose of 18F-FDG and acquisition time is important in obtaining consistently high-quality PET images. The aim of this study was to determine the optimal acquisition protocols based on patient weight for 3-dimensional lutetium oxyorthosilicate PET/CT. Methods: This study was a retrospective analysis of 76 patients ranging from 29 to 101 kg who were injected with 228–395.2 MBq of 18F-FDG for PET imaging. The study population was divided into 4 weight-based groups: less than 45 kg (group 1), 45–59 kg (group 2), 60–74 kg (group 3), and 75 kg or more (group 4). We measured the true coincidence rate, random coincidence rate, noise-equivalent counting rate (NECR), and random fraction and evaluated image quality by the coefficient of variance (COV) in the largest liver slices. Results: The true coincidence rate, random coincidence rate, and NECR significantly increased with increasing injected dose per kilogram (r = 0.91, 0.83, and 0.90; all P < 0.01). NECR maximized at 10.11 MB/kg in underweight patients. The true coincidence rate differed significantly among the 4 groups, except for group 3 versus group 4 (P < 0.01). The ratio of the true coincidence rate for group 2 to groups 3 and 4 was 1.4 and 1.6, respectively. The average random fraction for all 4 groups was approximately 35%. The COV of the 4 groups differed for all pairs (P < 0.01). The COVs in overweight patients were larger than those in underweight patients, and image quality in overweight patients was poor. Conclusion: We modified acquisition protocols for 18F-FDG PET/CT according to the characteristics of a 3-dimensional lutetium orthosilicate PET scanner and PET image quality based on patient weight. The optimal acquisition time was approximately 1.4–1.6 times longer in overweight patients than in normal-weight patients. Estimation of optimal acquisition times using the true coincidence rate is more important than other variables in improving PET image quality.

  • 18F-FDG
  • patient weight
  • acquisition protocols
  • PET/CT
  • image quality
Next
Back to top

In this issue

Journal of Nuclear Medicine Technology: 53 (1)
Journal of Nuclear Medicine Technology
Vol. 53, Issue 1
March 1, 2025
  • Table of Contents
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Patient Weight–Based Acquisition Protocols to Optimize18F-FDG PET/CT Image Quality
(Your Name) has sent you a message from Journal of Nuclear Medicine Technology
(Your Name) thought you would like to see the Journal of Nuclear Medicine Technology web site.
Citation Tools
Patient Weight–Based Acquisition Protocols to Optimize18F-FDG PET/CT Image Quality
Akio Nagaki, Masahisa Onoguchi, Norikazu Matsutomo
Journal of Nuclear Medicine Technology May 2011, jnmt.110.081661; DOI: 10.2967/jnmt.110.081661

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Patient Weight–Based Acquisition Protocols to Optimize18F-FDG PET/CT Image Quality
Akio Nagaki, Masahisa Onoguchi, Norikazu Matsutomo
Journal of Nuclear Medicine Technology May 2011, jnmt.110.081661; DOI: 10.2967/jnmt.110.081661
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Weight-Based Protocols Offer Significant Reduction in Radiation Dose Without Affecting PET-CT Image Quality
  • Added Value of Digital over Analog PET/CT: More Significant as Image Field of View and Body Mass Index Increase
  • Influence of Statistical Fluctuation on Reproducibility and Accuracy of SUVmax and SUVpeak: A Phantom Study
  • Improvement in PET/CT Image Quality with a Combination of Point-Spread Function and Time-of-Flight in Relation to Reconstruction Parameters
  • Google Scholar

More in this TOC Section

  • An International Survey Investigating the Incidence and Management of Brown Fat Uptake on 18F-FDG PET/CT at Children’s Hospitals and Interventions for Mitigation
  • A Survey of Patient Experience During Molecular Breast Imaging
  • Safety and Efficacy of 90Y Selective Internal Radiation Therapy Using Glass Microspheres in Hepatocellular Carcinoma: A Southeast Asian Single-Institution Initial Experience
Show more Clinical Investigation

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire