Visual Abstract
Abstract
We devised and clinically validated a schema of rapid personalized predictive dosimetry for 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. It supersedes traditional empiric prescription by providing clinically meaningful predicted absorbed doses for first-strike optimization. Methods: Prostate-specific membrane antigen PET was conceptualized as a simulation study that captures the complex dosimetric interplay between tumor, marrow, and kidneys at a single time point. Radiation principles of fractionation, heterogeneity, normal-organ constraints (marrow, kidney), absorbed dose, and dose rate were introduced. We created a predictive calculator in the form of a free, open-source, and user-friendly spreadsheet that can be completed within minutes. Our schema achieves speed and accuracy by sampling tissue radioconcentrations (kBq/cm3) to be analyzed in conjunction with clinical input from the user that reflect dosimetric preconditions. The marrow-absorbed dose constraint was 0.217 Gy (dose rate, ≤0.0147 Gy/h) per fraction with an interfraction interval of at least 6 wk. Results: Our first 10 patients were analyzed. The first-strike mean tumor-absorbed dose threshold for any prostate-specific antigen (PSA) response was more than 10 Gy (dose rate, >0.1 Gy/h). The metastasis with the lowest first-strike tumor-absorbed dose correlated the best with the percentage decrease of PSA; its threshold to achieve hypothetical zero PSA was 20 Gy or more. Each patient’s PSA doubling time can be used to personalize their unique absorbed dose–response threshold. The predicted mean first-strike prescription constrained by marrow-absorbed dose rate per fraction was 11.0 ± 4.0 GBq. Highly favorable conditions (tumor sink effect) were dosimetrically expressed as the combination of tumor–to–normal-organ ratios of more than 150 for marrow and more than 4 for kidney. Our schema obviates the traditional role of the SUV as a predictive parameter. Conclusion: Our rapid schema is feasible to implement in any busy real-world theranostics unit and exceeds today’s best practice standards. Our dosimetric thresholds and predictive parameters can radiobiologically rationalize each patient’s first-strike prescription down to a single becquerel. Favorable tumor–to–normal-organ ratios can be prospectively exploited by predictive dosimetry to optimize the first-strike prescription. The scientific framework of our schema may be applied to other systemic radionuclide therapies.
- 177Lu-prostate-specific membrane antigen
- dosimetry
- marrow
- metastatic castration-resistant prostate cancer
- theranostics
Footnotes
Published online Jun. 20, 2024.
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
SNMMI members
Login to the site using your SNMMI member credentials
Individuals
Login as an individual user