Skip to main content

Main menu

  • Home
  • Content
    • Current
      • JNMT Supplement
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine Technology
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Nuclear Medicine Technology

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • Watch or Listen to JNMT Podcast
  • Visit SNMMI on Facebook
  • Join SNMMI on LinkedIn
  • Follow SNMMI on Twitter
  • Subscribe to JNMT RSS feeds
OtherImaging (JNMT)

Determining the minimal ultra-low dose CT for reliable attenuation correction of 18F-FDG PET-CT: a phantom study

David Cheng, Monica Ghita, David Menard and Ming-Kai Chen
Journal of Nuclear Medicine Technology November 2021, jnmt.121.262943; DOI: https://doi.org/10.2967/jnmt.121.262943
David Cheng
1 Jacobi Medical Center, United States;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Monica Ghita
2 Virginia Commonwealth University School of Medicine, United States;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Menard
3 Yale-New Haven Hospital, United States;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ming-Kai Chen
4 Yale University School of Medicine, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

To investigate minimal required sub milli-Sievert (mSv) ultra-low dose CT and corresponding tube current and voltage for reliable attenuation correction and semi- quantitation in 18F-FDG PET-CT in an effort for radiation dose reduction. Methods: We performed a PET-CT investigational study using a NEMA torso phantom containing six spheres (diameter: 10, 13, 17, 22, 28, 37 mm) filled with a fixed concentration of 60 kBq/ml and a background of 15 kBq/ml of 18F-FDG. Two sets of PET images, separated by 2 hours, were acquired for 3 minutes in a single bed position using 3-D mode with and without time-of-flight in a GE D-690 scanner. Several sets of CT images were acquired for attenuation correction with different combinations of tube voltage (80, 100, 120 kVp) and effective mAs (tube current-time product divided by pitch), using the maximum beam collimation (64 x 0.625 mm). The lowest CT acquisition technique available on this scanner is 10 mA, 0.4 s and 1.375 for the tube current, tube rotation time and pitch, respectively. The CT radiation dose was estimated based on the computed tomography dose index volume (CTDIvol) measurements performed following the standard methodology and the Imaging Performance Assessment of CT Scanners (ImPACT) calculator. Each of the CT techniques was used for attenuation correction to the same PET acquisition, using ordered-subset expectation maximum (OSEM) algorithm with 24 subsets and 2 iterations. The maximal and average radioactivity (kBq/ml) and standardized uptake values (SUV) of the spheres were measured. The minimal ultra-low dose CT for attenuation correction was determined by reproducible SUV measurements (±10%) compared to our reference CT protocol of 100 kVp and 80 mA for 0.5 s rotation. Results: The minimal ultra-low dose of CT for reproducible quantification in all spheres (<10% relative difference) was determined to be 0.3 mSv for a combination of 100 kVp and 10 mA at 0.5 s rotation, 0.984 helical pitch (0.26 mGy measured CTDIvol) . Based on these results we could confidently determine the CT parameters for reliable attenuation correction of PET images while significantly reducing the associated radiation dose. Conclusion: Our phantom study provided guidance in using ultra-low dose CT for precise attenuation correction and semi-quantification of 18F-FDG PET imaging, which can further reduce CT dose and radiation exposure to patients in clinical PET-CT studies. Clinical application: Based on the data, we can further reduce the radiation dose to sub-mSv using an ultra-low dose CT protocol for reliable attenuation correction in clinical 18F-FDG PET-CT studies.

  • CNMT
  • PET/CT
  • Research Methods
  • ASIR
  • attenuation correction CT
  • phantom study
  • reliable SUV quantitation
  • submillisievert CT
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine Technology: 53 (1)
Journal of Nuclear Medicine Technology
Vol. 53, Issue 1
March 1, 2025
  • Table of Contents
  • About the Cover
  • Index by author
  • Complete Issue (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Determining the minimal ultra-low dose CT for reliable attenuation correction of 18F-FDG PET-CT: a phantom study
(Your Name) has sent you a message from Journal of Nuclear Medicine Technology
(Your Name) thought you would like to see the Journal of Nuclear Medicine Technology web site.
Citation Tools
Determining the minimal ultra-low dose CT for reliable attenuation correction of 18F-FDG PET-CT: a phantom study
David Cheng, Monica Ghita, David Menard, Ming-Kai Chen
Journal of Nuclear Medicine Technology Nov 2021, jnmt.121.262943; DOI: 10.2967/jnmt.121.262943

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Determining the minimal ultra-low dose CT for reliable attenuation correction of 18F-FDG PET-CT: a phantom study
David Cheng, Monica Ghita, David Menard, Ming-Kai Chen
Journal of Nuclear Medicine Technology Nov 2021, jnmt.121.262943; DOI: 10.2967/jnmt.121.262943
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

Keywords

  • CNMT
  • PET/CT
  • research methods
  • ASIR
  • attenuation correction CT
  • phantom study
  • reliable SUV quantitation
  • submillisievert CT
SNMMI

© 2025 SNMMI

Powered by HighWire