Skip to main content
  • Main menu
  • User menu
  • Search
  • English ▼
    • English
    • Afrikaans
    • Albanian
    • Amharic
    • Arabic
    • Armenian
    • Azerbaijani
    • Basque
    • Belarusian
    • Bengali
    • Bosnian
    • Bulgarian
    • Catalan
    • Cebuano
    • Chichewa
    • Chinese (Simplified)
    • Chinese (Traditional)
    • Corsican
    • Croatian
    • Czech
    • Danish
    • Dutch
    • Esperanto
    • Estonian
    • Filipino
    • Finnish
    • French
    • Frisian
    • Galician
    • Georgian
    • German
    • Greek
    • Gujarati
    • Haitian Creole
    • Hausa
    • Hawaiian
    • Hebrew
    • Hindi
    • Hmong
    • Hungarian
    • Icelandic
    • Igbo
    • Indonesian
    • Irish
    • Italian
    • Japanese
    • Javanese
    • Kannada
    • Kazakh
    • Khmer
    • Korean
    • Kurdish (Kurmanji)
    • Kyrgyz
    • Lao
    • Latin
    • Latvian
    • Lithuanian
    • Luxembourgish
    • Macedonian
    • Malagasy
    • Malay
    • Malayalam
    • Maltese
    • Maori
    • Marathi
    • Mongolian
    • Myanmar (Burmese)
    • Nepali
    • Norwegian
    • Pashto
    • Persian
    • Polish
    • Portuguese
    • Punjabi
    • Romanian
    • Russian
    • Samoan
    • Scottish Gaelic
    • Serbian
    • Sesotho
    • Shona
    • Sindhi
    • Sinhala
    • Slovak
    • Slovenian
    • Somali
    • Spanish
    • Sudanese
    • Swahili
    • Swedish
    • Tajik
    • Tamil
    • Telugu
    • Thai
    • Turkish
    • Ukrainian
    • Urdu
    • Uzbek
    • Vietnamese
    • Welsh
    • Xhosa
    • Yiddish
    • Yoruba
    • Zulu

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine
  • SNMMI
    • JNM
    • JNMT
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Nuclear Medicine

Advanced Search

English ▼
  • English
  • Afrikaans
  • Albanian
  • Amharic
  • Arabic
  • Armenian
  • Azerbaijani
  • Basque
  • Belarusian
  • Bengali
  • Bosnian
  • Bulgarian
  • Catalan
  • Cebuano
  • Chichewa
  • Chinese (Simplified)
  • Chinese (Traditional)
  • Corsican
  • Croatian
  • Czech
  • Danish
  • Dutch
  • Esperanto
  • Estonian
  • Filipino
  • Finnish
  • French
  • Frisian
  • Galician
  • Georgian
  • German
  • Greek
  • Gujarati
  • Haitian Creole
  • Hausa
  • Hawaiian
  • Hebrew
  • Hindi
  • Hmong
  • Hungarian
  • Icelandic
  • Igbo
  • Indonesian
  • Irish
  • Italian
  • Japanese
  • Javanese
  • Kannada
  • Kazakh
  • Khmer
  • Korean
  • Kurdish (Kurmanji)
  • Kyrgyz
  • Lao
  • Latin
  • Latvian
  • Lithuanian
  • Luxembourgish
  • Macedonian
  • Malagasy
  • Malay
  • Malayalam
  • Maltese
  • Maori
  • Marathi
  • Mongolian
  • Myanmar (Burmese)
  • Nepali
  • Norwegian
  • Pashto
  • Persian
  • Polish
  • Portuguese
  • Punjabi
  • Romanian
  • Russian
  • Samoan
  • Scottish Gaelic
  • Serbian
  • Sesotho
  • Shona
  • Sindhi
  • Sinhala
  • Slovak
  • Slovenian
  • Somali
  • Spanish
  • Sudanese
  • Swahili
  • Swedish
  • Tajik
  • Tamil
  • Telugu
  • Thai
  • Turkish
  • Ukrainian
  • Urdu
  • Uzbek
  • Vietnamese
  • Welsh
  • Xhosa
  • Yiddish
  • Yoruba
  • Zulu
  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • JNM Supplement
    • SNMMI Annual Meeting Abstracts
    • Continuing Education
    • JNM Podcasts
  • Subscriptions
    • Subscribers
    • Institutional and Non-member
    • Rates
    • Journal Claims
    • Corporate & Special Sales
  • Authors
    • Submit to JNM
    • Information for Authors
    • Assignment of Copyright
    • AQARA requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • View or Listen to JNM Podcast
  • Visit JNM on Facebook
  • Join JNM on LinkedIn
  • Follow JNM on Twitter
  • Subscribe to our RSS feeds
OtherLetters to the Editor

Blood and Bone Marrow Dosimetry in Radioiodine Therapy of Thyroid Cancer

George Sgouros
Journal of Nuclear Medicine May 2005, 46 (5) 899-900;
George Sgouros
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

TO THE EDITOR:

In a recent article by de Keizer et al. (1), the red marrow dosimetry model that I described in a previous issue of The Journal of Nuclear Medicine (2) was used to estimate red marrow absorbed doses for patients receiving 131I-NaI. The formulation I described was based on the expected distribution of antibodies. It does not apply to the much smaller NaI molecule.

The key difference is in the distribution volume of the 2 radiopharmaceuticals. Radiolabeled antibody is assumed to initially distribute in the plasma and extracellular fluid space of the red marrow, spleen, and liver—organs whose extracellular fluid space rapidly equilibrates with plasma. The total volume of this initial distribution space is 2.5–4 L. Correspondingly, the initial plasma percentage of injected activity per liter (%IA/L) for antibodies is in the range of 25–40 (i.e., the reciprocal of the initial distribution volume). The initial %IA/L for 131I-NaI is in the range of 3–6, giving initial distribution volumes of 30–17 L. This means that the 131I is not confined to the extracellular fluid of the red marrow but is most likely evenly distributed throughout a much larger volume that includes the blood and the red marrow. The concentration of 131I in blood is, therefore, a better direct approximation of the concentration in red marrow. Use of a factor of between 0.2 and 0.4 to convert blood activity concentration to marrow activity concentration will underestimate the red marrow activity concentration (and, therefore, the absorbed dose) by between 5 and 2.5, respectively.

REFERENCES

  1. ↵
    de Keizer B, Hoekstra A, Konijnenberg MW, et al. Bone marrow dosimetry and safety of high 131I activities given after recombinant human thyroid-stimulating hormone to treat metastatic differentiated thyroid cancer. J Nucl Med. 2004;45:1549–1554.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
  2. ↵
    Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34:689–694.
    OpenUrlAbstract/FREE Full TextGoogle Scholar
PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine: 46 (5)
Journal of Nuclear Medicine
Vol. 46, Issue 5
May 1, 2005
  • Table of Contents
  • About the Cover
  • Index by author
Print
Download PDF
Article Alerts
Email Article
Citation Tools
Share
Blood and Bone Marrow Dosimetry in Radioiodine Therapy of Thyroid Cancer
George Sgouros
Journal of Nuclear Medicine May 2005, 46 (5) 899-900;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
Bookmark this article

Jump to section

  • Article
    • REFERENCES
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • Investigation of the Importance of Applying Various Methods of Calculation in Determining the Blood-Absorbed Dose for Patients with Differentiated Thyroid Carcinoma
  • Analysis of Residence Time, Effective Half-Life, and Internal Dosimetry Before Radioiodine Therapy
  • Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma
  • Google Scholar

More in this TOC Section

  • 176Lu Radiation in Long–Axial-Field-of-View PET Scanners: A Nonissue for Patient Safety
  • Business Model Beats Science and Logic: Dosimetry and Paucity of Its Use
  • Reply to “Routine Dosimetry: Proceed with Caution”
Show more Letters to the Editor

Similar Articles

  • PET/CT Attenuation Correction: Breathing Lessons
  • Single-Phase CT Aligned to Gated PET for Respiratory Motion Correction in Cardiac PET/CT
  • Reply: Attenuation Correction for Stress and Rest PET 82Rb Myocardial Perfusion Images
  • Cine CT for Attenuation Correction in Cardiac PET/CT
  • Comparison of Myocardial Perfusion 82Rb PET Performed with CT- and Transmission CT–Based Attenuation Correction
See more
SNMMI

© 2025 SNMMI

Powered by HighWire
Alerts for this Article
Sign In to Email Alerts with your Email Address
Email this Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Blood and Bone Marrow Dosimetry in Radioiodine Therapy of Thyroid Cancer
(Your Name) has sent you a message from Journal of Nuclear Medicine
(Your Name) thought you would like to see the Journal of Nuclear Medicine web site.
Citation Tools
Blood and Bone Marrow Dosimetry in Radioiodine Therapy of Thyroid Cancer
George Sgouros
Journal of Nuclear Medicine May 2005, 46 (5) 899-900;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

We use cookies on this site to enhance your user experience

By clicking any link on this page you are giving your consent for us to set cookies.