Skip to main content

Main menu

  • Home
  • Content
    • Current
      • JNMT Supplement
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of Nuclear Medicine Technology
  • SNMMI
    • JNMT
    • JNM
    • SNMMI Journals
    • SNMMI
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Journal of Nuclear Medicine Technology

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Past Issues
    • Continuing Education
    • JNMT Podcast
    • SNMMI Annual Meeting Abstracts
  • Subscriptions
    • Subscribers
    • Rates
    • Journal Claims
    • Institutional and Non-member
  • Authors
    • Submit to JNMT
    • Information for Authors
    • Assignment of Copyright
    • AQARA Requirements
  • Info
    • Reviewers
    • Permissions
    • Advertisers
    • Corporate & Special Sales
  • About
    • About Us
    • Editorial Board
    • Contact Information
  • More
    • Alerts
    • Feedback
    • Help
    • SNMMI Journals
  • Watch or Listen to JNMT Podcast
  • Visit SNMMI on Facebook
  • Join SNMMI on LinkedIn
  • Follow SNMMI on Twitter
  • Subscribe to JNMT RSS feeds
Abstract

Quantitation of iodine-123-beta-CIT dopamine receptor uptake in a phantom model.

L K Leong, M K O'Connor and D M Maraganore
Journal of Nuclear Medicine Technology June 1999, 27 (2) 117-122;
L K Leong
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M K O'Connor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D M Maraganore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The purpose of this study was to determine the effects of technical factors such as collimation and filtration on the measurement of 123I-beta-CIT uptake in the striatum.

All SPECT studies were performed using a brain phantom containing striata within a bone- and tissue-equivalent skull. The effects of collimator resolution and septal penetration were assessed from 99mTc and 123I studies containing variable activities in the striata and background regions. Optimum attenuation coefficients (mu) were determined from studies containing uniform activity in the brain.

For 99mTc, mu was 0.095 cm-1 and 0.07 cm-1 for parallel-hole and fanbeam collimators, respectively. For 123I, these values dropped to 0.09 cm-1 and 0.00 cm-1 (zero) for medium-energy and fanbeam collimators, respectively. Striatal uptake was significantly underestimated, particularly for medium-energy and general-purpose collimators. With 99mTc, fanbeam collimation gave a 50% increase in the measured striatal uptake, compared to medium-energy collimation. However, with 123I, this gain was eliminated by septal penetration and scatter. Increasing transaxial slice thickness, ROI size and decreasing filter cutoff frequency all degraded apparent striatal uptake.

Partial volume effects, combined with the averaging effects of increasing slice thickness and ROI size, are the most significant factors affecting measurement of striatal uptake of 123I-beta-CIT. The increased resolution of low-energy high-resolution collimators, compared to a medium-energy collimator, is offset by the increased septal penetration and scatter.

PreviousNext
Back to top

In this issue

Journal of Nuclear Medicine Technology
Vol. 27, Issue 2
June 1, 1999
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Nuclear Medicine Technology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantitation of iodine-123-beta-CIT dopamine receptor uptake in a phantom model.
(Your Name) has sent you a message from Journal of Nuclear Medicine Technology
(Your Name) thought you would like to see the Journal of Nuclear Medicine Technology web site.
Citation Tools
Quantitation of iodine-123-beta-CIT dopamine receptor uptake in a phantom model.
L K Leong, M K O'Connor, D M Maraganore
Journal of Nuclear Medicine Technology Jun 1999, 27 (2) 117-122;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Quantitation of iodine-123-beta-CIT dopamine receptor uptake in a phantom model.
L K Leong, M K O'Connor, D M Maraganore
Journal of Nuclear Medicine Technology Jun 1999, 27 (2) 117-122;
Twitter logo Facebook logo LinkedIn logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • A Comparison of the Uniformity Requirements for SPECT Image Reconstruction Using FBP and OSEM Techniques
  • Google Scholar

Similar Articles

SNMMI

© 2025 SNMMI

Powered by HighWire