An analytical algorithm for skew-slit imaging geometry with nonuniform attenuation correction

Med Phys. 2006 Apr;33(4):997-1004. doi: 10.1118/1.2174719.

Abstract

The pinhole collimator is currently the collimator of choice in small animal single photon emission computed tomography (SPECT) imaging because it can provide high spatial resolution and reasonable sensitivity when the animal is placed very close to the pinhole. It is well known that if the collimator rotates around the object (e.g., a small animal) in a circular orbit to form a cone-beam imaging geometry with a planar trajectory, the acquired data are not sufficient for an exact artifact-free image reconstruction. In this paper a novel skew-slit collimator is mounted instead of the pinhole collimator in order to significantly reduce the image artifacts caused by the geometry. The skew-slit imaging geometry is a more generalized version of the pinhole imaging geometry. The multiple pinhole geometry can also be extended to the multiple-skew-slit geometry. An analytical algorithm for image reconstruction based on the tilted fan-beam inversion is developed with nonuniform attenuation compensation. Numerical simulation shows that the axial artifacts are evidently suppressed in the skew-slit images compared to the pinhole images and the attenuation correction is effective.

Publication types

  • Evaluation Study

MeSH terms

  • Algorithms*
  • Artifacts*
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Tomography, Emission-Computed, Single-Photon / instrumentation
  • Tomography, Emission-Computed, Single-Photon / methods*
  • Tomography, Emission-Computed, Single-Photon / veterinary*