Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The metastatic niche: adapting the foreign soil

Abstract

The 'seed and soil' hypothesis for metastasis sets forth the concept that a conducive microenvironment, or niche, is required for disseminating tumour cells to engraft distant sites. This Opinion presents emerging data that support this concept and outlines the potential mechanism and temporal sequence by which changes occur in tissues distant from the primary tumour. To enable improvements in the prognosis of advanced malignancy, early interventions that target both the disseminating seed and the metastatic soil are likely to be required.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of the evolution of a metastatic niche.
Figure 2: Stage-specific targeting of the metastatic microenvironment.

Similar content being viewed by others

References

  1. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573 (1889).

    Google Scholar 

  2. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  3. Virchow, R. Cellularpathologie 1st edn (ed. Hirschwalkd, A.) (Berlin, 1858).

    Google Scholar 

  4. Ewing, J. Neoplastic diseases 6th edn (ed. Saunders, W.) (W. B. Saunders Co., Philadelphia, 1928).

    Google Scholar 

  5. Fidler, I. J. & Kripke, M. L. Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893–895 (1977).

    CAS  PubMed  Google Scholar 

  6. Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980).

    CAS  PubMed  Google Scholar 

  7. Li, L. & Neaves, W. B. Normal stem cells and cancer stem cells: the niche matters. Cancer Res. 66, 4553–4557 (2006).

    CAS  PubMed  Google Scholar 

  8. Yin, T. & Li, L. The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J. & Li, L. Stem cell niche: microenvironment and beyond. J. Biol. Chem. 283, 9499–9503 (2008).

    CAS  PubMed  Google Scholar 

  10. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    CAS  PubMed  Google Scholar 

  11. Sneddon, J. B. & Werb, Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell 1, 607–611 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Psaila, B., Kaplan, R. N., Port, E. R. & Lyden, D. Priming the 'soil' for breast cancer metastasis: the pre-metastatic niche. Breast Dis. 26, 65–74 (2006).

    CAS  PubMed  Google Scholar 

  13. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    CAS  PubMed  Google Scholar 

  14. Weigelt, B. & Bissell, M. J. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin. Cancer Biol. 18, 311–321 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Joyce, J. A. & Hanahan, D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3, 1516–1619 (2004).

    CAS  PubMed  Google Scholar 

  16. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  17. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    CAS  Google Scholar 

  18. Weiss, L. & Ward, P. M. Arrest and retention of circulating cancer cells in the lungs of animals with defined metastatic status. Cancer Res. 42, 1898–1903 (1982).

    CAS  PubMed  Google Scholar 

  19. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Weiss, L., Mayhew, E., Rapp, D. G. & Holmes, J. C. Metastatic inefficiency in mice bearing B16 melanomas. Br. J. Cancer 45, 44–53 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biol. 8, 1369–1375 (2006).

    CAS  PubMed  Google Scholar 

  22. Hiratsuka, S. et al. The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biol. 10, 1349–1355 (2008).

    CAS  PubMed  Google Scholar 

  23. Wels, J., Kaplan, R. N., Rafii, S. & Lyden, D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 22, 559–574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Peinado, H., Rafii, S. & Lyden, D. Inflammation joins the “niche”. Cancer Cell 14, 347–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    CAS  PubMed  Google Scholar 

  26. Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    CAS  PubMed  Google Scholar 

  27. Nilsson, S. K., Johnston, H. M. & Coverdale, J. A. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97, 2293–2299 (2001).

    CAS  PubMed  Google Scholar 

  28. Calvi, L. M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  PubMed  Google Scholar 

  29. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    CAS  PubMed  Google Scholar 

  30. Kiel, M. J. & Morrison, S. J. Uncertainty in the niches that maintain haematopoietic stem cells. Nature Rev. Immunol. 8, 290–301 (2008).

    CAS  Google Scholar 

  31. Kaplan, R. N., Psaila, B. & Lyden, D. Niche-to-niche migration of bone-marrow-derived cells. Trends Mol. Med. 13, 72–81 (2007).

    CAS  PubMed  Google Scholar 

  32. Alix-Panabieres, C., Riethdorf, S. & Pantel, K. Circulating tumor cells and bone marrow micrometastasis. Clin. Cancer Res. 14, 5013–5021 (2008).

    CAS  PubMed  Google Scholar 

  33. Jones, D. H. et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440, 692–696 (2006).

    CAS  PubMed  Google Scholar 

  34. Mantovani, A. Cancer: Inflaming metastasis. Nature 457, 36–37 (2009).

    CAS  PubMed  Google Scholar 

  35. Giavazzi, R. et al. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res. 50, 4771–4775 (1990).

    CAS  PubMed  Google Scholar 

  36. Kim, S. et al. Carcinoma produced factors activate myeloid cells via TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    CAS  PubMed  Google Scholar 

  38. Page-McCaw, A., Ewald, A. J. & Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nature Rev. Mol. Cell Biol. 8, 221–233 (2007).

    CAS  Google Scholar 

  39. Lopez-Otin, C. & Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nature Rev. Cancer 7, 800–808 (2007).

    CAS  Google Scholar 

  40. Yang, L. & Moses, H. L. Transforming growth factor b: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res. 68, 9107–9111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wai, P. Y. & Kuo, P. C. Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev. 27, 103–118 (2008).

    CAS  PubMed  Google Scholar 

  42. Bellahcene, A., Castronovo, V., Ogbureke, K. U., Fisher, L. W. & Fedarko, N. S. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nature Rev. Cancer 8, 212–226 (2008).

    CAS  Google Scholar 

  43. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    CAS  Google Scholar 

  44. Yang, L. et al. Abrogation of TGFb signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 67, 5064–5066 (2007).

    CAS  PubMed  Google Scholar 

  46. Jin, D. K. et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nature Med. 12, 557–567 (2006).

    CAS  PubMed  Google Scholar 

  47. Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111, 1227–1233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rafii, D. C., Psaila, B., Butler, J., Jin, D. K. & Lyden, D. Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler. Thromb. Vasc. Biol. 28, 217–222 (2008).

    CAS  PubMed  Google Scholar 

  49. Jain, S. et al. Platelet glycoprotein Iba supports experimental lung metastasis. Proc. Natl Acad. Sci. USA 104, 9024–9028 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kucia, M. et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1–CXCR4 axis. Stem Cells 23, 879–894 (2005).

    CAS  PubMed  Google Scholar 

  51. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    CAS  PubMed  Google Scholar 

  52. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer 6, 392–401 (2006).

    CAS  Google Scholar 

  53. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow-derived cell recruitment to form the pre-metastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van Deventer, H. W. et al. C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am. J. Pathol. 173, 253–264 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng, J. D. & Weiner, L. M. Tumors and their microenvironments: tilling the soil. Commentary re: A. M. Scott. et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 9, 1590–1595 (2003).

    CAS  PubMed  Google Scholar 

  57. Olaso, E. et al. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26, 634–642 (1997).

    CAS  PubMed  Google Scholar 

  58. Olaso, E. et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37, 674–685 (2003).

    CAS  PubMed  Google Scholar 

  59. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol 19, 2282–2287 (2008).

    PubMed  PubMed Central  Google Scholar 

  60. Ghajar, C. M. & Bissell, M. J. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem. Cell Biol. 130, 1105–1118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Du, R. et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Denko, N. C. et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22, 5907–5914 (2003).

    CAS  PubMed  Google Scholar 

  63. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    CAS  PubMed  Google Scholar 

  64. Astrof, S. et al. Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol. Cell. Biol. 24, 8662–8670 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Alcaraz, J. et al. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO J. 27, 2829–2838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. McDonbald, D. M. & Baluk, P. Significance of blood vessel leakiness in cancer. Cancer Res, 62, 5381–5385 (2002).

    Google Scholar 

  67. Dvorak, H. F., Nagy, J. A., Dvorak, J. T. & Dvorak, A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol. 133, 95–109 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ribatti, D., Nico, B., Vacca, A., Roncali, L. & Dammacco, F. Endothelial cell heterogeneity and organ specificity. J. Hematother. Stem Cell Res. 11, 81–90 (2002).

    PubMed  Google Scholar 

  70. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    CAS  PubMed  Google Scholar 

  71. LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Med. 8, 913–917 (2002).

    CAS  PubMed  Google Scholar 

  72. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ding, L. et al. In vivo evaluation of the early events associated with liver metastasis of circulating cancer cells. Br. J. Cancer 85, 431–438 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Biancone, L., Araki, M., Araki, K., Vassalli, P. & Stamenkovic, I. Redirection of tumor metastasis by expression of E-selectin in vivo. J. Exp. Med. 183, 581–587 (1996).

    CAS  PubMed  Google Scholar 

  75. Hirakawa, S. et al. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109, 1010–1017 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hirakawa, S. et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med. 201, 1089–1099 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rinderknecht, M. & Detmar, M. Tumor lymphangiogenesis and melanoma metastasis. J. Cell Physiol. 216, 347–354 (2008).

    CAS  PubMed  Google Scholar 

  78. Podsypanina, K. et al. Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321, 1841–1844 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chin, L. The genetics of malignant melanoma: lessons from mouse and man. Nature Rev. Cancer 3, 559–570 (2003).

    CAS  Google Scholar 

  80. Bidard, F. C., Pierga, J. Y., Vincent-Salomon, A. & Poupon, M. F. A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer Metastasis Rev. 27, 5–10 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Weiss, L. Metastatic inefficiency. Adv. Cancer Res. 54, 159–211 (1990).

    CAS  PubMed  Google Scholar 

  82. Weiss, L. Cancer cell traffic from the lungs to the liver: an example of metastatic inefficiency. Int. J. Cancer 25, 385–392 (1980).

    CAS  PubMed  Google Scholar 

  83. Langley, R. R. & Fidler, I. J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28, 297–321 (2007).

    CAS  PubMed  Google Scholar 

  84. Minn., A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Minn., A. J. et al. Lung metastasis genes couple breast tumor size and metastatic spread. Proc. Natl Acad. Sci. USA 104, 6740–6745 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999).

    CAS  PubMed  Google Scholar 

  87. Gupta, G. P. et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc. Natl Acad. Sci. USA 104, 19506–19511 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev. Cancer 3, 55–63 (2003).

    CAS  Google Scholar 

  89. Vaida, K. S. et al. Breast cancer metastasis suppressor-1 differentially modulates growth factor signaling. J. Biol. Chem 283, 28354–28360 (2008).

    Google Scholar 

  90. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    CAS  PubMed  Google Scholar 

  91. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Larizza, L. et al. Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma Eb is derived from spontaneous fusion with a host macrophage. Int. J. Cancer 34, 699–707 (1984).

    CAS  PubMed  Google Scholar 

  94. Pawelek, J. M. & Chakraborty, A. K. The cancer cell–leukocyte fusion theory of metastasis. Adv. Cancer Res. 101, 397–444 (2008).

    CAS  PubMed  Google Scholar 

  95. Pawelek, J. M. & Chakraborty, A. K. Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nature Rev. Cancer 8, 377–386 (2008).

    CAS  Google Scholar 

  96. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature Rev. Cancer 6, 449–458 (2006).

    CAS  Google Scholar 

  97. Yu, Q., Toole, B. P. & Stamenkovic, I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J. Exp. Med. 186, 1985–1996 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).

    CAS  PubMed  Google Scholar 

  99. Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).

    CAS  PubMed  Google Scholar 

  100. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    CAS  PubMed  Google Scholar 

  101. Yamamoto, M. et al. TSU68 prevents liver metastasis of colon cancer xenografts by modulating the premetastatic niche. Cancer Res. 68, 9754–9762 (2008).

    CAS  PubMed  Google Scholar 

  102. Wang, J. & Armant, D. R. Integrin-mediated adhesion and signaling during blastocyst implantation. Cells Tissues Organs 172, 190–201 (2002).

    CAS  PubMed  Google Scholar 

  103. Wang, J., Mayernik, L. & Armant, D. R. Integrin signaling regulates blastocyst adhesion to fibronectin at implantation: intracellular calcium transients and vesicle trafficking in primary trophoblast cells. Dev. Biol. 245, 270–279 (2002).

    CAS  PubMed  Google Scholar 

  104. Hess, R. A., Cooke, P. S., Hofmann, M. C. & Murphy, K. M. Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle 5, 1164–1170 (2006).

    CAS  PubMed  Google Scholar 

  105. Taupin, P. Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Rev. 2, 213–219 (2006).

    PubMed  Google Scholar 

  106. Steinman, L. Nuanced roles of cytokines in three major human brain disorders. J. Clin. Invest. 118, 3557–3563 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Libby, P. Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am. J. Med. 121, S21–S31 (2008).

    CAS  PubMed  Google Scholar 

  108. Weber, C., Zernecke, A. & Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nature Rev. Immunol. 8, 802–815 (2008).

    CAS  Google Scholar 

  109. Szekanecz, Z. & Koch, A. E. Mechanisms of disease: angiogenesis in inflammatory diseases. Nature Clin. Pract. Rheumatol. 3, 635–643 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Peinado for his assistance with Fig. 1. B.P. received research support from a Kay Kendall Leukaemia Fund Travelling Fellowship and a Fulbright Scholarship in Cancer Research. D.L. receives grants from the National Cancer Institute (RO1CA098234); Susan G. Komen for the Cure; National Foundation for Cancer Research; Emerald Foundation; Malcolm Hewitt Wiener Foundation; Nancy C. and Daniel P. Paduano Foundation; American Hellenic Educational Progressive Association; Charles and Meryl Witmer Family Foundation; Butler Foundation and the Children's Cancer and Blood Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lyden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Psaila, B., Lyden, D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9, 285–293 (2009). https://doi.org/10.1038/nrc2621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing