Skip to main content
Log in

Positron emission tomography (PET) detectors with depth-of- interaction (DOI) capability

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Because positron emission tomography (PET) provides biochemical information in vivo with the sensitivity at the sub-pico-molar level, pre-clinical research using PET plays an important role in biological and pharmaceutical sciences. However, small animal imaging by PET has been challenging with respect to spatial resolution and sensitivity due to the small volume of the imaging objects. A DOI-encoding technique allows for pre-clinical PET to simultaneously achieve high spatial resolution and high sensitivity. Thus many DOI-encoding methods have been proposed. In this paper we describe why DOI measurements are important, what is required in DOI-encoding designs, and how to extract DOI information in scintillator-based DOI detectors. Recently, there has been a growing interest in DOI measurements for TOF PET detectors to correct time walk as a function of DOI position. Thus, the DOI-encoding method with a high time performance suitable for TOF detectors is now required. The requirements to improve the time resolution in DOI detectors are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price P. PET as a potential tool for imaging molecular mechanisms of oncology in man. Trends Mol Med. 2001; 7(10):442–426.

    Article  Google Scholar 

  2. Jagoda EM, Vaquero JJ, Seidel J, Green MV, Eckelman WC. Experiment assessment of mass effects in the rat: implications for small animal PET imaging. Nucl Med Biol. 2004; 31(6):771–779.

    Article  Google Scholar 

  3. Derenzo SE, Moses WW, Jackson HG, Turko BT, Cahoon JL, Geyer AB, Vuletich T. Initial characterization of a positionsensitive photodiode/BGO detector for PET. IEEE T Nucl Sci. 1989; 36(1):1084–1089.

    Article  Google Scholar 

  4. Moses WW. Trends in PET imaging. Nucl Instrum Meth A. 2001; 471:209–214.

    Article  Google Scholar 

  5. Kim JS, Lee JS, Im KC, Kim SJ, Kim SY, Lee DS, Moon DH. Performance measurement of the microPET Focus 120 scanner. J Nucl Med. 2007; 48(9):1527–1535.

    Article  Google Scholar 

  6. Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJ, Boerman OC. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. 2009; 50(1):139–147.

    Article  Google Scholar 

  7. MacDonald LR, Dahlbom M. Parallax correction in PET using depth of interaction information. IEEE T Nucl Sci. 1998; 45(4):2232–2237.

    Article  Google Scholar 

  8. Lee JS. Technical advances in current PET and hybrid imaging systems. Open Nucl Med J. 2010; 2:192–208.

    Google Scholar 

  9. Shibuya K, Nishikido F, Inadama N, Yoshida E, Chihfung Lam, Tsuda T, Yamaya T, Murayama H. Timing resolution improved by DOI information in an LYSO TOF-PET detector. Conf Rec IEEE NSS MIC. 2007; M19–M17.

  10. Spanoudaki VCh, Levin CS. Investigating the temporal resolution limits of scintillation detection from pixelated elements: comparison between experiment and simulation. Phys Med Biol. 2011; 56(3):735–756.

    Article  Google Scholar 

  11. Surti S, Karp JS. Design considerations for a limited angle, dedicated breast, TOF PET scanner. Phys Med Biol. 2008; 53(11):2911–2921.

    Article  Google Scholar 

  12. Lewellen TK. Recent developments in PET detector technology. Phys Med Biol. 2008; 53:R287–R317.

    Article  Google Scholar 

  13. Liu S, Li H, Zhang Y, Ramirez RA, Baghaei H, An S, Wang C, Liu J, Wong WH. Monte Carlo simulation study on the time resolution of a PMT-quadrant-sharing LSO detector block for time-of-flight PET. IEEE T Nucl Sci. 2009; 56(5):2614–2620.

    Article  Google Scholar 

  14. Moses WW, Derenzo SE. Prospects for time-of-flight PET using LSO scintillator. IEEE T Nucl Sci. 1999; 46(3):474–477.

    Article  Google Scholar 

  15. Moses WW. Recent advances and future advances in time-offlight PET. Nucl Instrum Meth A. 2007; 580(2):919–924.

    Article  MathSciNet  Google Scholar 

  16. Xiaobuang Y. A study of light collection efficiency in scintillation detectors. Nucl Instrum Meth A. 1984; 228(1):101–104.

    Article  Google Scholar 

  17. Aykac M, Bauer F, Williams CW, Loope M, Schmand M. Recent timing performance of Hi-Rez detector for time-of-flight (TOF) PET. IEEE T Nucl Sci. 2008; 53(3):1084–1089.

    Article  Google Scholar 

  18. Moisan C, Vozza D, Loope M. Simulating the performances of an LSO based position encoding detector for PET. IEEE T Nucl Sci. 1997; 44(6):2450–2458.

    Article  Google Scholar 

  19. Moszynski M, Kapusta M, Nassalski A, Szczesniak T, Wolski D, Eriksson L, Melcher CL. New prospects for time-of-flight PET with LSO scintillator. IEEE T Nucl Sci. 2006; 53(5):2484–2488.

    Article  Google Scholar 

  20. Hong SJ, Song IC, Ito M, Kwon SI, Lee GS, Sim KS, Park KS, Rhee JT, Lee JS. An investigation into the use of Geiger-mode solide-state photomultipliers for simultaneous PET and MRI acquisition. IEEE T Nucl Sci. 2008; 55(3):882–888.

    Article  Google Scholar 

  21. Lee JS, Hong SJ. Geiger-mode avalanche photodiodes for PET/MRI. In: Iniewski K, editor. Electronic circuits for radiation detection. Boca Raton: CRC Press LLC; 2010. pp. 179–200.

    Google Scholar 

  22. Kwon SI, Lee JS, Yoon HS, Ito M, Ko GB, Choi JY, Lee SH, Chan Song I, Jeong JM, Lee DS, Hong SJ. Development of small-animal PET prototype using silicon photomultiplier (SiPM): initial results of phantom and animal imaging studies. J Nucl Med. 2011; 52(4):572–579.

    Article  Google Scholar 

  23. Karp JS, Daube-Withespoon ME. Depth-of-interaction determination in NaI(TI) and BGO scintillation crystals using a temperature gradient. Nucl Instrum Meth A. 1987; 260:509–517.

    Article  Google Scholar 

  24. Jung JH, Choi Y, Chung YH, Devroede O, Krieguer M. Bruyndonckx P, Tavernier S. Optimization of LSO/LuYAP phoswich detector for small animal PET. Nucl Instrum Meth A. 2007; 571:669–675.

    Article  Google Scholar 

  25. Seidel J, Vaquero JJ, Siegel S, Gandler WR, Green MV. Depth identification accuracy of a three layer phoswich PET detector module. IEEE T Nucl Sci. 1999; 46(3):485–490.

    Article  Google Scholar 

  26. Chandrikamohan P, DeVol TA. Comparison of pulse shape discrimination methods for phoswich and CsI:Tl detectors. IEEE T Nucl Sci. 2007; 54(2):398–403.

    Article  Google Scholar 

  27. Du H, Yang Y, Glodo J, Wu Y, Shah K, Cherry SR. Continuous depth-of-interaction encoding using phosphor-coated scintillators. Phys Med Biol. 2009; 54(6):1757–1771.

    Article  Google Scholar 

  28. Streun M, Brandenburg G, Larue H, Saleh H, Zimmermann E, Ziemons K, Halling H. Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET. IEEE T Nucl Sci. 2003; 50(3):344–347.

    Article  Google Scholar 

  29. Liu H, Omura T, Watanabe M, Yamashita T. Development of a depth of interaction detector for gamma-rays. Nucl Instrum Meth A. 2001; 459:182–190.

    Article  Google Scholar 

  30. Zhang N, Thompson CJ, Togane D, Cayouette F, Nguyen KQ. Anode position and last dynode timing circuits for dual-layer BGO scintillator with PS-PMT based modular PET detectors. IEEE T Nucl Sci. 2002; 49(5):2203–2207.

    Article  Google Scholar 

  31. Hong SJ, Kwon SI, Ito M, Lee GS, Sim KS, Park KS, Rhee JT, Lee JS. Concept verification of three-layer DOI detectors for animal PET. IEEE T Nucl Sci. 2008; 55(3):912–917.

    Article  Google Scholar 

  32. Ito M, Lee JS, Kwon SI, Lee GS, Hong B, Lee KS, Sim KS, Lee SJ, Rhee JT, Hong SJ. A four-layer DOI detector with a relative offset for use in an animal PET system. IEEE T Nucl Sci. 2010; 57(3):976–982.

    Article  Google Scholar 

  33. Chung YH, Hwang JH, Baek C-H, Lee S-J, Ito M, Lee JS, Hong SJ. Monte Carlo simulation of a four-layer DOI detector with relative offset in animal PET. Nucl Instrum Meth A. 2011; 626- 7:43–50.

    Article  Google Scholar 

  34. Ito M, Hong SJ, Lee JS, Kwon SI, Lee GS, Park KS, Hong B, Lee KS, Lee SJ, Rhee JT, Sim KS. Four-layer DOI detector with a relative offset in animal PET system. Conf Rec IEEE NSS MIC. 2007; M26-76.

  35. Murayama H, Ishibashi I, Uchida H, Omura T, Yamashita T. Depth encoding multicrystal detectors for PET. IEEE T Nucl Sci. 1998; 45(3):1152–1158.

    Article  Google Scholar 

  36. Tsuda T, Murayama H, Kitamura K, Yamaya T, Yoshida E, Omura T, Kawai H, Inadama N, Orita N. A four-layer depth of interaction detector block for small animal PET. IEEE T Nucl Sci. 2004; 51(5):2537–2542.

    Article  Google Scholar 

  37. Inadama N, Murayama H, Hamamoto M, Tsuda T, Ono Y, Yamaya T, Yoshida E, Shibuya K, Nishikido F. 8-layer DOI encoding of 3-dimensional crystal array. Conf Rec IEEE NSS MIC. 2005; J01-5.

  38. Inadama N, Murayama H, Yamaya T, Nishikido F, Shibuya K, Yoshida E, Tsuda T, Ohmura A, Yazaki Y, Osada H. DOI PET detectors with scintillation crystals cut as triangular prisms. Conf Rec IEEE NSS MIC. 2008; M06-201.

  39. Rafecas M, Boning G, Pichler BJ, Lorenz E, Schwaiger M, Ziegler SI. A Monte Carlo study of high-resolution PET with Granulated dual-layer detectors. IEEE T Nucl Sci. 2001; 48(4):1490–1495.

    Article  Google Scholar 

  40. McElroy DP, Hoose M, Pimpl W, Spanoudaki V, Schüler T, Ziegler SI. A true singles list-mode data acquisition system for a small animal PET scanner with independent crystal readout. Phys Med Biol. 2005; 50(14):3323–3335.

    Article  Google Scholar 

  41. Levin CS. Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE T Nucl Sci. 2000; 49(5):2236–2243.

    Article  Google Scholar 

  42. Vandenbroucke A, Foudray AM, Olcott PD, Levin CS. Performance characterization of a new high resolution PET scintillation detector. Phys Med Biol. 2010; 55(19):5895–5911.

    Article  Google Scholar 

  43. Braem A, Chesi E, Joram C, Séguinot J, Weilhammer P, De Leo R, Nappi E, Lustermann W, Schinzel D, Johnson I, Renker D, Albrecht S. High precision axial coordinate readout for an axial 3-D PET detector module using a wavelength shifter strip matrix. Nucl Instrum Meth A. 2007; 580(3):1513–1521.

    Article  Google Scholar 

  44. Beltrame P, Bolle E, Braem A, Casella C, Chesi E, Clinthorne N, Cochran E, De Leo R, Dissertori G, Djambazov G, Fanti V, Honscheid K, Huh S, Johnson I, Joram C, Kagan H, Lustermann W, Meddi F, Nappi E, Nessi-Tedaldi F, Oliver JF, Pauss P, Rafecas M, Renker D, Rudge A, Schinzel D, Schneider T, Seguinot J, Smith S, Solevi P, Stapnes S, Weilhammer P. Construction and tests of demonstrator modules for a 3-D axial PET system for brain or small animal imaging. Nucl Instrum Meth A. [In press].

  45. Shimizu K, Ohmura T, Watanabe M, Uchida H, Yamashita T. Development of 3-D detector system for positron CT. IEEE T Nucl Sci. 1988; 35(1):717–721.

    Article  Google Scholar 

  46. Shao Y, Silverman RW, Farrell R, Cirignano L, Grazioso R, Shah KS, Vissel G, Clajus M, Tumer TO, Cherry SR. Design studies of a high resolution PET detector using APD arrays. IEEE T Nucl Sci. 2000; 47(3):1051–1057.

    Article  Google Scholar 

  47. Yang Y, Dokhale PA, Silverman RW, Shah KS, McClish MA, Farrell R, Entine G, Cherry SR. Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes. Phys Med Biol. 2006; 51(9):2131–2142.

    Article  Google Scholar 

  48. Abreu MC, Aguiar JD, Almeida FG, Almeida P, Bento P, Carrico B, Ferreira M, Ferreira NC, Goncalves F, Leong C, Lopes F, Lousa P, Martins MV, Matela N, Mendes PR, Moura R, Nobre J, Oliveira N, Ortigao C, Peralta L, Pereira R, Rego J, Ribeiro R, Rodrigues P, Sampaio J, Santos AI, Silva L, Silva JC, Sousa P, Teixeira IC, Teixeira JP, Trindade A, Varela J. Design and evaluation of the Clear-PEM scanner for positron emission mammography. IEEE T Nucl Sci. 2006; 53(1):71–77.

    Article  Google Scholar 

  49. Shao Y, Li H, Gao K. Initial experimental studies of using solidstate photomultiplier for PET applications. Nucl Instrum Meth A. 2007; 580(2):944–950.

    Article  Google Scholar 

  50. Yang Y, Wu Y, Qi J, James SS, Du H, Dokhale PA, Shah KS, Farrell R, Cherry SR. A prototype PET scanner with DOIencoding detectors. J Nucl Med. 2008; 49(7):1132–1140.

    Article  Google Scholar 

  51. Worstell W, Adler S, Domigan P, Johnson O, Kudrolli H, Lazuka D, Monteverde P, Nevin J, Rohatgi R, Romanov L, Starsja S. Design and performance of a prototype whole-body PET/CT scanner with fiber optic readout. Conf Rec IEEE NSS MIC. 2004; 3280–3284.

  52. Du H, Yang Y, Cherry SR. Measurements of wavelength shifting (WLS) fibre readout for a highly multiplexed, depthencoding PET detector. Phys Med Biol. 2007; 52(9):2499–2514.

    Article  Google Scholar 

  53. Lewellen TK. The challenge of detector designs for PET. AJR Am J Roentgenol. 2010; 195(2):301–309.

    Article  Google Scholar 

  54. Cherry SR, Shao Y, Tornai MP, Siegel S, Ricci AR, Phelps ME. Collection of scintillation light from small BGO crystals. IEEE T Nucl Sci. 1995; 42(4):1058–1063.

    Article  Google Scholar 

  55. Joung J, Miyaoka RS, Lewellen TK. cMiCE: a high resolution animal PET using continuous LSO with a statistics based positioning scheme. Nucl Instrum Meth A. 2002; 489(1–3):584–598.

    Article  Google Scholar 

  56. Ling T, Lewellen TK, Miyaoka RS. Depth of interaction decoding of a continuous crystal detector module. Phys Med Biol. 2007; 52(8):2213–2228.

    Article  Google Scholar 

  57. van der Laan DJ, Maas MC, Schaart DR, Bruyndonckx P, Lamaitre C, van Eijk CWE. Spatial resolution in positionsensitive monolithic scintillation detectors. Conf Rec IEEE NSS MIC. 2006; 2506–2510.

  58. Bruyndonckx P, Leonard S, Liu J, Tavernier S, Szupryczynski P, Fedorov A. Study of spatial resolution and depth of interaction of APD-based PET detector modules using light sharing schemes. IEEE T Nucl Sci. 2003; 50(5):1415–1419.

    Article  Google Scholar 

  59. Maas MC, van der Laan DJ, Schaart DR, Huizenga J, Brouwer JC, Bruyndonckx P, Leonard S, Lemaitre C, van Eijk CWE. Experimental characterization of monolithic-crystal small animal PET detectors read out by APD arrays. IEEE T Nucl Sci. 2006; 53(3):1071–1077.

    Article  Google Scholar 

  60. Bruyndonckx P, Lemaître C, Schaart D, Maas M, van der Laan DJ, Krieguer M, Devroede O, Tavernier S. Towards a continuous crystal APD-based PET detector design. Nucl Instrum Meth A. 2007; 571(1–2):182–186.

    Article  Google Scholar 

  61. Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, Beekman FJ. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol. 2009; 54(11):3501–3512.

    Article  Google Scholar 

  62. Vinke R, Löhner H, Schaart DR, van Dam HT, Seifert S, Beekman FJ, Dendooven P. Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array. Nucl Instrum Meth A. 2010; 621(1–3):595–604.

    Article  Google Scholar 

  63. Chung YH, Lee S-J, Beak C-H, Choi Y. New design of a quasimonolithic detector module with DOI capability for small animal PET. Nucl Instrum Meth A. 2008; 593(3):588–591.

    Article  Google Scholar 

  64. Lee S-J, Baek C-H, Hwang JY, Choi Y, Chung YH. Preliminary experimental results of a quasi-monolithic detector with DOI capability for a small animal PET. Nucl Instrum Meth A. 2010; 621:590–594.

    Article  Google Scholar 

  65. Lee S-J, Baek C-H, Chung YH, Choi Y. A cross-stack quasimonolithic detector with DOI capability for a small animal PET. Conf Rec IEEE NSS MIC, 2008; M06–M81.

  66. Miyaoka RS, Lewellen TK. Design of a depth of interaction (DOI) PET detector module. IEEE T Nucl Sci. 1998; 45(4):1069–1073.

    Article  Google Scholar 

  67. Lewellen TK, Janes M, Miyaoka RS. DMice-a depth-ofinteraction detector design for PET scanners. Conf Rec IEEE NSS MIC. 2002; 2288-92.

  68. Champley KM, Lewellen TK, MacDonald LR, Miyaoka RS, Kinahan PE. Statistical three-dimensional positioning algorithm for high-resolution dMiCE PET detector. Conf Rec IEEE NSS MIC. 2008; 4751–4754.

  69. Yang Y, Wu Y, Cherry SR. Investigation of depth of interaction encoding for a pixelated LSO array with a single multi-channel PMT. IEEE T Nucl Sci. 2009; 56(5):2594–2599.

    Article  Google Scholar 

  70. Ito M, Lee JS, Park MJ, Sim KS, Hong SJ. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a singleended readout by a multi-anode PMT. Phys Med Biol. 2010; 55(13):3827–3841.

    Article  Google Scholar 

  71. Haneishi H, Sato M, Inadama N, Murayama H. Simplified simulation of four-layer depth of interaction detector for PET. Radiol Phys Technol. 2008; 1(1):106–114.

    Article  Google Scholar 

  72. Cho ZH, Juh SC. Resolution and sensitivity improvement in positron emission tomography by the first interaction point determination. Conf Rec IEEE NSS MIC. 1991; 1623-7.

  73. Comanor KA, Virador PRG, Moses WW. Algorithms to identify detector Compton scatter in PET modules. IEEE T Nucl Sci. 1996; 43(4):2213–2219.

    Article  Google Scholar 

  74. Miyaoka RS, Lewellen TK. Effect of detector scatter on the decoding accuracy of a DOI detector. IEEE T Nucl Sci. 2000; 47(4):1614–1619.

    Article  Google Scholar 

  75. Park S-J, Rogers WL, Clinthorne NH. Effect of inter-crystal Compton scatter on efficiency and image noise in small animal PET module. Conf Rec IEEE NSS MIC. 2003; M3–M115.

  76. Lashkari S, Sarkar S, Ay MR, Rahmim A. The influence of crystal material on intercrystal scattering and the parallax effect in PET block detectors: A Monte Carlo study. IFMBE Proc. 2008; 21(8):633–636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, M., Hong, S.J. & Lee, J.S. Positron emission tomography (PET) detectors with depth-of- interaction (DOI) capability. Biomed. Eng. Lett. 1, 70–81 (2011). https://doi.org/10.1007/s13534-011-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-011-0019-6

Keywords

Navigation