Skip to main content

Advertisement

Log in

18F-fluoride uptake in bone metastasis: morphologic and metabolic analysis on integrated PET/CT

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of our study was to evaluate detectability of bone metastatic lesions and evaluate the correlation between 18F-fluoride uptake patterns on positron emission tomography (PET) and morphologic changes on CT using integrated PET/CT.

Methods

We performed whole-body 18F-fluoride PET/CT staging for 27 patients with known cancer. Tumor types comprised breast (n = 7), prostate (n = 7), and others (n = 13). A total of 154 uptake lesions were evaluated. Both tracer uptake patterns determined by 18F-fluoride PET and morphologic patterns based on CT findings such as morphologic changes, involved locations, and grades scored using five-point scale were compared with histologic tumor subtypes and clinical laboratory data.

Results

CT patterns of metastatic lesion were lytic or unclassified in 26 lesions, sclerotic in 53 lesions, and mixed in 75 lesions. Multiple linear regression analysis revealed that metastatic bone lesions with high maximum standardized uptake value (SUVmax) tended to show sclerotic or mixed changes on CT (P < 0.0001), and were also distributed in bone cortex alone or both bone cortex and medulla (P < 0.0001).

Conclusion

In patients with bone metastasis, the lesions with sclerotic or mixed changes or located in bone cortex alone or both bone cortex and medulla tend to show high SUVmax on 18F-fluoride PET/CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22:2942–53.

    Article  PubMed  Google Scholar 

  2. Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med. 2001;45:53–64.

    CAS  PubMed  Google Scholar 

  3. Citrin DL, Bessent RG, Greig WR. A comparison of the sensitivity and accuracy of the 99TCm-phosphate bone scan and skeletal radiograph in the diagnosis of bone metastases. Clin Radiol. 1977;28:107–17.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenthal DI. Radiologic diagnosis of bone metastases. Cancer. 1997;80:1595–607.

    Article  CAS  PubMed  Google Scholar 

  5. Galasko CS, Doyle FH. The detection of skeletal metastases from mammary cancer: a regional comparison between radiology and scintigraphy. Clin Radiol. 1972;23:295–7.

    Article  CAS  PubMed  Google Scholar 

  6. Lee YT. Bone scanning in patients with early breast carcinoma: should it be a routine staging procedure? Cancer. 1981;47:486–95.

    Article  CAS  PubMed  Google Scholar 

  7. Sanders TG, Parsons TW 3rd. Radiographic imaging of musculoskeletal neoplasia. Cancer Control. 2001;8:221–31.

    CAS  PubMed  Google Scholar 

  8. Tryciecky EW, Gottschalk A, Ludema K. Oncologic imaging: interactions of nuclear medicine with CT and MRI using the bone scan as a model. Semin Nucl Med. 1997;27:142–51.

    Article  CAS  PubMed  Google Scholar 

  9. Coleman RE. Monitoring of bone metastases. Eur J Cancer. 1998;34:252–9.

    Article  CAS  PubMed  Google Scholar 

  10. Zimmer WD, Berquist TH, McLeod RA, Sim FH, Pritchard DJ, Shives TC, et al. Bone tumors: magnetic resonance imaging versus computed tomography. Radiology. 1985;155:709–18.

    CAS  PubMed  Google Scholar 

  11. Moon KL Jr, Genant HK, Helms CA, Chafetz NI, Crooks LE, Kaufman L. Musculoskeletal applications of nuclear magnetic resonance. Radiology. 1983;147:161–71.

    PubMed  Google Scholar 

  12. Vogler JB 3rd, Murphy WA. Bone marrow imaging. Radiology. 1988;168:679–93.

    PubMed  Google Scholar 

  13. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer. 2000;88:2927–33.

    Article  CAS  PubMed  Google Scholar 

  14. Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med. 1998;39:431–5.

    CAS  PubMed  Google Scholar 

  15. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article  PubMed  Google Scholar 

  16. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of skeletal kinetics of fluorine 18-fluoride ion and PET. J Nucl Med. 1992;33:633–42.

    CAS  PubMed  Google Scholar 

  17. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45:272–8.

    PubMed  Google Scholar 

  18. Even-Sapir E, Metser U, Mihsani E, Mishani E, Lievshitz G, Lerman H, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  19. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  20. Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kühn T, Kreienberg R, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17:2381–9.

    CAS  PubMed  Google Scholar 

  21. Schirrmeister H, Glatting G, Hetzel J, Nüssle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–4.

    CAS  PubMed  Google Scholar 

  22. Schirrmeister H, Buck A, Guhlmann A, Reske SN. Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid. 2001;11:677–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kawaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawaguchi, M., Tateishi, U., Shizukuishi, K. et al. 18F-fluoride uptake in bone metastasis: morphologic and metabolic analysis on integrated PET/CT. Ann Nucl Med 24, 241–247 (2010). https://doi.org/10.1007/s12149-010-0363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-010-0363-0

Keywords

Navigation