Skip to main content

Advertisement

Log in

Preliminary retrospective investigation of FDG-PET/CT timing in follow-up of ablated lung tumor

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to clarify the most appropriate follow-up initiation time point for positron emission tomography (PET)/computed tomography (CT) following radio frequency ablation (RFA) of lung tumors, and the cutoff values of maximum standard uptake value (SUVmax) to evaluate local tumor progression.

Methods

We enrolled 15 patients (8 men, median age 62 years) with 60 tumors, who were treated with RFA of lung tumors and underwent fluorodeoxyglucose (FDG)-PET/CT following RFA. Local tumor progression was assessed by periodic chest CT images prior to and following intravenous administration of a contrast medium. The SUVmax of three periods, namely, 0–3 months, 3–6 months, and 6–9 months after RFA, was evaluated. The appropriate time point for follow-up initiation and the cutoff value of SUVmax were determined using receiver-operating characteristic (ROC) analysis.

Results

The median follow-up period was 357 days. Of 60 tumors, 10 showed local progression. The area under the ROC curve (Az) for the 6–9 months (P = 0.044) was the largest and almost equal to that of the 3–6 months (P = 0.024). Az for the 0–3 months was the smallest and statistically insignificant (P = 0.705). The cutoff value of 1.5 of SUVmax at 3–9 months after RFA showed 77.8% sensitivity and 85.7–90.5% specificity.

Conclusions

The appropriate follow-up initiation time point is at least 3 months following RFA. Thus, SUVmax is a useful and reliable predictive indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mulier S, Ni Y, Jamart J, Ruers T, Marchal G, Michel L. Local recurrence after hepatic radiofrequency coagulation: multivariate meta-analysis and review of contributing factors. Ann Surg 2005;242:158–171.

    Article  PubMed  Google Scholar 

  2. Komorizono Y, Oketani M, Sako K, Yamasaki N, Shibatou T, Maeda M, et al. Risk factors for local recurrence of small hepatocellular carcinoma tumors after a single session, single application of percutaneous radiofrequency ablation. Cancer 2003;97:1253–1262.

    Article  PubMed  Google Scholar 

  3. Farrell MA, Charboneau WJ, DiMarco DS, Chow GK, Zincke H, Callstrom MR, et al. Imaging-guided radiofrequency ablation of solid renal tumors. Am J Roentgenol 2003;180:1509–1513.

    CAS  Google Scholar 

  4. Burak WE Jr, Agnese DM, Povoski SP, Yanssens TL, Bloom KJ, Wakely PE, et al. Radiofrequency ablation of invasive breast carcinoma followed by delayed surgical excision. Cancer 2003;98:1369–1376.

    Article  PubMed  Google Scholar 

  5. Hiraki T, Yasui K, Mimura H, Gobara H, Mukai T, Hase S, et al. Radiofrequency ablation of metastatic mediastinal lymph nodes during cooling and temperature monitoring of the tracheal mucosa to prevent thermal tracheal damage: initial experience. Radiology 2005;237:1068–1074.

    Article  PubMed  Google Scholar 

  6. Yasui K, Kanazawa S, Sano Y, Fujiwara T, Kagawa S, Mimura H, et al. Thoracic tumors treated with CT-guided radiofrequency ablation: initial experience. Radiology 2004;231:850–857.

    Article  PubMed  Google Scholar 

  7. Lee JM, Jin GY, Goldberg SN, Lee YC, Chung GH, Han YM, et al. Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and metastases: preliminary report. Radiology 2004;230:125–134.

    Article  PubMed  Google Scholar 

  8. Steinke K, King J, Glenn DW, Morris DL. Percutaneous radiofrequency ablation of lung tumors with expandable needle electrodes: tips from preliminary experience. Am J Roentgenol 2004;183:605–611.

    Google Scholar 

  9. Hiraki T, Tajiri N, Mimura H, Yasui K, Gobara H, Mukai T, et al. Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumors: incidence and risk factors. Radiology 2006;241:275–283.

    Article  PubMed  Google Scholar 

  10. Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD III, Dupuy DE, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Radiology 2005;235:728–739.

    Article  PubMed  Google Scholar 

  11. de Baère T, Palussière J, Aupèrin A, Hakime A, Abdel-Rehim M, Kind M, et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology 2006;240:587–596.

    Article  PubMed  Google Scholar 

  12. Steinke K, King J, Glenn D, Morris DL. Radiologic appearance and complications of percutaneous computed tomography-guided radiofrequency-ablated pulmonary metastases from colorectal carcinoma. J Comput Assist Tomogr 2003;27:750–757.

    Article  PubMed  Google Scholar 

  13. Oyama Y, Nakamura K, Matsuoka T, Toyoshima M, Yamamoto A, Okuma T, et al. Radiofrequency ablated lesion in the normal porcine lung: long-term follow-up with MRI and pathology. Cardiovasc Intervent Radiol 2005;28:346–353.

    Article  PubMed  Google Scholar 

  14. Yi CA, Lee KS, Kim BT, Choi JY, Kwon OJ, Kim H, et al. Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med 2006;47:443–450.

    PubMed  Google Scholar 

  15. Mac Manus MP, Hicks RJ, Matthews JP, McKenzie A, Rischin D, Salminen EK, et al. Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer. J Clin Oncol 2003;21:1285–1292.

    Article  PubMed  Google Scholar 

  16. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 2003;21:2651–2657.

    Article  PubMed  CAS  Google Scholar 

  17. Okuma T, Okamura T, Matsuoka T, Yamamoto A, Oyama Y, Toyoshima M, et al. Fluorine-18-fluorodeoxyglucose positron emission tomography for assessment of patients with unresectable recurrent or metastatic lung cancers after CT-guided radiofrequency ablation: preliminary results. Ann Nucl Med 2006;20:115–121.

    Article  PubMed  Google Scholar 

  18. Okuma T, Matsuoka T, Okamura T, Wada Y, Yamamoto A, Oyama Y, et al. 18F-FDG small-animal PET for monitoring the therapeutic effect of CT-guided radiofrequency ablation on implanted VX2 lung tumors in rabbits. J Nucl Med 2006;47:1351–1358.

    PubMed  Google Scholar 

  19. Yamamoto A, Nakamura K, Matsuoka T, Toyoshima M, Okuma T, Oyama Y, et al. Radiofrequency ablation in a porcine lung model: correlation between CT and histopathologic findings. Am J Roentgenol 2005;185:1299–1306.

    Article  Google Scholar 

  20. Yoshioka T, Yamaguchi K, Kubota K, Saginoya T, Yamazaki T, Ido T, et al. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med 2003;44:690–699.

    PubMed  CAS  Google Scholar 

  21. Bunyaviroch T, Coleman RE. PET evaluation of lung cancer. J Nucl Med 2006;47:451–469.

    PubMed  Google Scholar 

  22. Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 1993;188:487–490.

    PubMed  Google Scholar 

  23. Duhaylongsod FG, Lowe VJ, Patz EF Jr, Vaughn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 1995;110:130–139.

    Article  PubMed  CAS  Google Scholar 

  24. Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Momose M, Nagai A, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med 2006;47:426–431.

    PubMed  Google Scholar 

  25. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305–332.

    Article  PubMed  Google Scholar 

  26. Keidar Z, Haim N, Guralnik L, Wollner M, Bar-Shalom R, Ben-Nun A, et al. PET/CT using 18F-FDG in suspected lung cancer recurrence: diagnostic value and impact on patient management. J Nucl Med 2004;45:1640–1646.

    PubMed  Google Scholar 

  27. Bastarrika G, Garcia-Velloso MJ, Lozano MD, Montes U, Torre W, Spiteri N, et al. Early lung cancer detection using spiral computed tomography and positron emission tomography. Am J Respir Crit Care Med 2005;171:1378–1383.

    Article  PubMed  Google Scholar 

  28. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999;40:556–565.

    PubMed  CAS  Google Scholar 

  29. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42:1412–1417.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyo Higaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higaki, F., Okumura, Y., Sato, S. et al. Preliminary retrospective investigation of FDG-PET/CT timing in follow-up of ablated lung tumor. Ann Nucl Med 22, 157–163 (2008). https://doi.org/10.1007/s12149-007-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-007-0113-0

Keywords

Navigation