Skip to main content

Advertisement

Log in

Dual-phase FDG-PET: delayed acquisition improves hepatic detectability of pathological uptake

FDG-PET nella identificazione di lesioni epatiche: miglioramento della sensibilità con acquisizione tardiva

  • Abdominal Radiology/Radiologia Addominale
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate whether the acquisition of delayed images could improve the detectability of liver pathological uptakes.

Materials and methods

Ninety-five consecutive patients with suspected liver metastases underwent a dual-phase positron emission tomography (PET) scan. All patients underwent a whole-body PET/computed tomography (CT) scan (PET-1) acquired 1 h post [18F]fluorodeoxyglucose (FDG) injection, and a liver PET/CT scan [that is, one or two fields of view (FOV) of the upper abdomen; PET-2] acquired 2 h postinjection. In all cases, image reconstruction was performed as 3D reconstruction algorithm Fourier rebinning (FORE) iterative, FOV 50 cm, image matrix size 128×128. Both studies were evaluated qualitatively and semiquantitatively [background standard uptake values (SUV)mean of the liver, lesion SUVmax and SUVmean and ratio SUVmean lesion/background).

Results

Thirty-seven of 95 patients (38.9%) presented liver lesions at both PET-1 and PET-2 exams, whereas there were two (2.2%) only at PET-2. Eighty-one liver lesions were identified at both PET studies, whereas there were nine (11.1%) only at PET-2. Furthermore, at PET-2, we had a statistically significant reduction of SUVmean background values (p<0.001, Wilcoxon test) and a concomitant increase of SUVmean lesion values (p<0.001, Wilcoxon test), ratio lesion to background (p<0.001, Wilcoxon test).

Conclusions

Acquisition of delayed images improved the hepatic detection of pathological FDG uptake.

Riassunto

Obiettivo

Scopo di questo studio è stato quello di valutare se in pazienti con sospette secondarietà epatiche, la riacquisizione di immagini, 2 ore dopo la somministrazione del radiofarmaco (tardiva), comporta un miglioramento della sensibilità dell’esame PET.

Materiali e metodi

Sono stati inclusi 95 pazienti consecutivi con sospette metastasi epatiche. Tutti hanno eseguito esame PET/TC total body 1 ora dopo la somministrazione di FDG (PET-1). In tutti i casi, 2 ore dopo l’iniezione, è stata eseguita una seconda acquisizione mirata sull’addome superiore (PET-2). La ricostruzione delle immagini è stata eseguita con algoritmo 3D FORE iterativo (FOV 50 cm, dimensione della matrice 128×128). Entrambi gli esami sono stati valutati qualitativamente e semi-quantitativamente (SUVmedio fondo del fegato, SUVmax e SUVmedio della lesione e rapporto SUVmedio lesione/fondo).

Risultati

Trentasette dei 95 pazienti (38,9%) hanno presentato anomale iperfissazioni di radiofarmaco a livello epatico in entrambi gli esami PET; 2 pazienti (2,2%) sono risultati positivi solo in PET-2. Entrambi gli esami hanno messo in evidenza 81 lesioni epatiche, mentre altre 9 (11,1%) sono state evidenziate solo con l’esame PET-2. Inoltre in PET-2 si notava una riduzione significativa del SUVmedio del fondo (p<0,001, Wilcoxon test) ed un contemporaneo aumento del SUVmedio della lesione (p<0,001, Wilcoxon test) e del rapporto lesione/fondo (p<0,001, Wilcoxon test).

Conclusioni

La riacquisizione tardiva di immagini PET aumenta la capacità dell’esame PET di identificare fissazioni patologiche di FDG a livello epatico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Pelosi E, Messa C, Sironi S et al (2004) Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 31: 932–939

    Article  PubMed  Google Scholar 

  2. Erasmus JJ, McAdams HP, Patz EFJr et al (1998) Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol 170:1369–1373

    PubMed  CAS  Google Scholar 

  3. Higashi K, Ueda Y, Seki H et al (1998) Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med 39:1016–1020

    PubMed  CAS  Google Scholar 

  4. Jana S, Blaufox MD (2006) Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 36:51–72

    Article  PubMed  Google Scholar 

  5. Talbot JN, Gutman F, Fartoux L et al (2006) PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG PET/CT. Eur J Nucl Med Mol Imaging 33:1285–1289

    Article  PubMed  Google Scholar 

  6. Lindholm P, Minn H, Leskinen-Kallio S et al (1993) Influence of the blood glucose concentration on FDG uptake in cancer-a PET study. J Nucl Med 34:1–6

    PubMed  CAS  Google Scholar 

  7. Bettinardi V, Danna M, Savi A et al (2004) Performance evaluation of the new whole-body PET/CT scanner: Discovery ST. Eur J Nucl Med Mol Imaging 31:867–881

    Article  PubMed  Google Scholar 

  8. Surti S, Karp JS (2004) Imaging characteristics of a 3-dimensional GSO whole-body PET camera. J Nucl Med 45:1040–1049

    PubMed  CAS  Google Scholar 

  9. Brambilla M, Secco C, Dominietto M et al (2005) Performance characteristics obtained for a new 3-dimensional lutetium oxyorthosilicate-based wholebody PET/CT scanner with the National Electrical Manufacturers Association NU 2-2001 standard. J Nucl Med 46:2083–2091

    PubMed  CAS  Google Scholar 

  10. Cook GJ, Fogelman I, Maisey MN (1996) Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med 26:308–314

    Article  PubMed  CAS  Google Scholar 

  11. Boucher L, Rodrigue S, Lecomte R, Benard F (2004) Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. J Nucl Med 45:214–219

    PubMed  Google Scholar 

  12. Ruers TJ, Langenhoff BS, Neeleman N et al (2002) Value of positron emission tomography with [18F] fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 20:388–395

    Article  PubMed  CAS  Google Scholar 

  13. Nehmeh SA, Erdi YE, Pan T et al (2004) Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 31:3179–3186

    Article  PubMed  CAS  Google Scholar 

  14. Slosman DO, Quinodoz M, Willi JP (2005) Breath-hold PET/CT imaging: clinical value in thoracic and upper abdominal investigations. Eur J Nucl Med Mol Imaging 32(Suppl 1):S80

    Google Scholar 

  15. Kubota K, Itoh M, Ozaki K et al (2001) Advantage of delayed whole-body FDG-PET imaging for tumor detection. Eur J Nucl Med 28:696–703

    Article  PubMed  CAS  Google Scholar 

  16. Lowe VJ, DeLong DM, Hoffman JM, Coleman RE (1995) Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy. J Nucl Med 36:883–887

    PubMed  CAS  Google Scholar 

  17. Fischman AJ, Alpert NM (1993) FDGPET in oncology: there’s more to it than looking at pictures. J Nucl Med 34:6–11

    PubMed  CAS  Google Scholar 

  18. Hustinx R, Smith RJ, Benard F et al (1999) Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 26:1345–1348

    Article  PubMed  CAS  Google Scholar 

  19. Matthies A, Hickeson M, Cuchiara A, Alavi A (2002) Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 43:871–875

    PubMed  Google Scholar 

  20. Koyama K, Okamura T, Kawabe J et al (2002) The usefulness of 18F-FDG PET images obtained 2 hours after intravenous injection in liver tumor. Ann Nucl Med 16:169–176

    Article  PubMed  Google Scholar 

  21. Higashi T, Saga T, Nakamoto Y et al (2003) Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET): usefulness and limitations in “clinical reality”. Ann Nucl Med 17:261–279

    PubMed  Google Scholar 

  22. Torizuka T, Tamaki N, Inokuma T et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36:1811–1817

    PubMed  CAS  Google Scholar 

  23. Nishiyama Y, Yamamoto Y, Monden T et al (2005) Evaluation of delayed additional FDG PET imaging in patients with pancreatic tumour. Nucl Med Comm 26:895–901

    Article  Google Scholar 

  24. Gallagher BM, Fowler JS, Gutterson NI et al (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 19:1154–1161

    PubMed  CAS  Google Scholar 

  25. Okazumi S, Isono K, Enomoto K et al (1992) Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 33:333–339

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pelosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arena, V., Skanjeti, A., Casoni, R. et al. Dual-phase FDG-PET: delayed acquisition improves hepatic detectability of pathological uptake. Radiol med 113, 875–886 (2008). https://doi.org/10.1007/s11547-008-0287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-008-0287-0

Keywords

Parole chiave

Navigation