Skip to main content
Log in

Cardiac toxicity with anti-HER-2 therapies-what have we learned so far?

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Trastuzumab, a monoclonal antibody that blocks HER-2 receptor, improves the survival of women with HER-2-positive early and advanced breast cancer when given with chemotherapy. Lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER-2, is approved for the treatment of metastatic breast cancer patients after failure of prior anthracycline, taxanes and trastuzumab therapies in combination with capecitabine. Importantly, cardiac toxicity, manifested as symptomatic congestive heart failure or asymptomatic left ventricular ejection fraction decline, has been reported in some of the patients receiving these novel anti-HER-2 therapies, particularly when these drugs are used following anthracyclines, whose cardiotoxic potential has been recognized for decades. This review will focus on the incidence, natural history, underlying mechanisms, management, and areas of uncertainty regarding trastuzumab-and lapatinib-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Herceptin approved in Japan for early treatment in patients with HER2-positive breast cancer. In Edition 2008

  2. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  3. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  4. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  CAS  PubMed  Google Scholar 

  5. Slamon D, Eiermann W, Robert N et al (2006) BCIRG 006: 2nd interim analysis phase III randomized trial Phase III comparing doxorubicin and cyclophosphamide followed by docetaxel (AC-T) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (AC-TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients. Breast Cancer Res Treat 100: General Session 2; Abstract 2

  6. Joensuu H, Kellokumpu-Lehtinen PL, Bono P et al (2006) Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med 354:809–820

    Article  CAS  PubMed  Google Scholar 

  7. Seidman A, Hudis C, Pierri MK et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20:1215–1221

    Article  CAS  PubMed  Google Scholar 

  8. Perez EA, Koehler M, Byrne J et al (2008) Cardiac safety of lapatinib: pooled analysis of 3, 689 patients enrolled in clinical trials. Mayo Clin Proc 83:679–686

    Article  PubMed  Google Scholar 

  9. Lee KF, Simon H, Chen H et al (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–398

    Article  CAS  PubMed  Google Scholar 

  10. Erickson SL, O’Shea KS, Ghaboosi N et al (1997) ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2—and heregulin-deficient mice. Development 124:4999–5011

    CAS  PubMed  Google Scholar 

  11. Sawyer DB, Zuppinger C, Miller TA et al (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105:1551–1554

    Article  CAS  PubMed  Google Scholar 

  12. Zhao YY, Sawyer DR, Baliga RR et al (1998) Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 273:10261–10269

    Article  CAS  PubMed  Google Scholar 

  13. Strasser F, Betticher DC, Suter TM (2001) Trastuzumab and breast cancer. N Engl J Med 345:996

    CAS  PubMed  Google Scholar 

  14. Camenisch TD, Schroeder JA, Bradley J et al (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    CAS  PubMed  Google Scholar 

  15. Crone SA, Zhao YY, Fan L et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459–465

    Article  CAS  PubMed  Google Scholar 

  16. Chien KR (2006) Herceptin and the heart—a molecular modifier of cardiac failure. N Engl J Med 354:789–790

    Article  CAS  PubMed  Google Scholar 

  17. Suter TM, Cook-Bruns N, Barton C (2004) Cardiotoxicity associated with trastuzumab (Herceptin) therapy in the treatment of metastatic breast cancer. Breast 13:173–183

    Article  CAS  PubMed  Google Scholar 

  18. Lemmens K, Fransen P, Sys SU et al (2004) Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 109:324–326

    Article  CAS  PubMed  Google Scholar 

  19. Lemmens K, Segers VF, De Keulenaer GW (2005) Letter regarding article by Okoshi et al, neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of {beta}-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 111:e175 author reply e175

    Article  PubMed  Google Scholar 

  20. Okoshi K, Nakayama M, Yan X et al (2004) Neuregulins regulate cardiac parasympathetic activity: muscarinic modulation of beta-adrenergic activity in myocytes from mice with neuregulin-1 gene deletion. Circulation 110:713–717

    Article  CAS  PubMed  Google Scholar 

  21. Lemmens K, Doggen K, De Keulenaer GW (2007) Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 116:954–960

    Article  CAS  PubMed  Google Scholar 

  22. Ewer MS, Vooletich MT, Durand JB et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820–7826

    Article  CAS  PubMed  Google Scholar 

  23. Timolati F, Ott D, Pentassuglia L et al (2006) Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 41:845–854

    Article  CAS  PubMed  Google Scholar 

  24. Smith I, Procter M, Gelber RD et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369:29–36

    Article  CAS  PubMed  Google Scholar 

  25. Suter TM, Procter M, van Veldhuisen DJ et al (2007) Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol 25:3859–3865

    Article  CAS  PubMed  Google Scholar 

  26. Pinder MC, Duan Z, Goodwin JS et al (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25:3808–3815

    Article  CAS  PubMed  Google Scholar 

  27. Tan-Chiu E, Yothers G, Romond E et al (2005) Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 23:7811–7819

    Article  CAS  PubMed  Google Scholar 

  28. Rastogi P, Jeong J, Geyer CE et al (2007) Five year update of cardiac dysfunction on NSABP B-31, a randomized trial of sequential doxorubicin/cyclophosphamide (AC)→paclitaxel (T) vs. AC→T with trastuzumab(H). J Clin Oncol 25:6S LBA513

    Article  Google Scholar 

  29. Perez EA, Suman VJ, Davidson NE et al (2008) cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central cancer treatment group N9831 adjuvant breast cancer trial. J Clin Oncol 26(8):1231–1238

    Article  CAS  PubMed  Google Scholar 

  30. Spielman M, Roché H, Humblet Y et al (2007) 3-year follow-up of trastuzumab following adjuvant chemotherapy in node positive HER2-positive breast cancer patients: results of the PACS-04 trial. Breast Cancer Res Treat 106:S19 abstract 72

    Article  Google Scholar 

  31. McArthur HL, Chia S (2007) Cardiotoxicity of trastuzumab in clinical practice. N Engl J Med 357:94–95

    Article  CAS  PubMed  Google Scholar 

  32. Suter TM, Procter M, Piccart MJ (2008) Trastuzumab-related cardiotoxicty in the herceptin adjuvant trial. J Clin Oncol 26:2053–2054

    Article  Google Scholar 

  33. Buzdar AU, Valero V, Ibrahim NK et al (2007) Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 13:228–233

    Article  CAS  PubMed  Google Scholar 

  34. Gianni L, Semiglazov V, Manikhas GM et al (2007) Neoadjuvant trastuzumab in locally advanced breast cancer (NOAH): antitumor and safety analysis. J Clin Oncol 25:10S abstract 532

    Article  Google Scholar 

  35. Gianni L, Eiermann W, Semiglazov V et al (2008) Neoadjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer: primary efficacy analysis of the NOAH trial. Proceedings of the 31st SABCS 2008; LBA 31

  36. Untch M, Rezai M, Loibl S et al (2008) Neoadjuvant treatment of HER2 overexpressingp rimary breast cancer with trastuzumab given concomitantly to epirubicin/cyclophosphamide foloweed by docetaxel ± capecitabine. First analysis of efficacy and safety of the GBG/AGO multicenter Intergroup-study “GeparQuattro”. Eur J Cancer 6:47 41LB

    Google Scholar 

  37. Perez EA, Suman VJ, Davidson NE et al (2008) Cardiac safety analysis of doxorubicin and cyclophosphamide followed by paclitaxel with or without trastuzumab in the North Central cancer treatment group N9831 adjuvant breast cancer trial. J Clin Oncol 26:1231–1238

    Article  CAS  PubMed  Google Scholar 

  38. Montemurro F, Faggiuolo R, Redana S et al (2005) Continuation of trastuzumab beyond disease progression. J Clin Oncol 23:2866–2868 discussion 2868–2869

    Article  PubMed  Google Scholar 

  39. Zuppinger C, Timolati F, Suter TM (2007) Pathophysiology and diagnosis of cancer drug induced cardiomyopathy. Cardiovasc Toxicol 7:61–66

    Article  CAS  PubMed  Google Scholar 

  40. Ewer SM, Ewer MS (2008) Cardiotoxicity profile of trastuzumab. Drug Saf 31:459–467

    Article  CAS  PubMed  Google Scholar 

  41. Ewer MS, Lippman SM (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23:2900–2902

    Article  CAS  PubMed  Google Scholar 

  42. Burris HA 3rd, Hurwitz HI, Dees EC et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23:5305–5313

    Article  CAS  PubMed  Google Scholar 

  43. Pandite L, Burris HA, Jones S et al (2004) A safety, tolerability, and pharmacokinetic (PK) study of GW572016 in patients with solid tumors. J Clin Oncol 22:238S abstract 3179

    Google Scholar 

  44. Spector NL, Yarden Y, Smith B et al (2007) Activation of AMP-activated protein kinase by human EGF receptor 2/EGF receptor tyrosine kinase inhibitor protects cardiac cells. Proc Natl Acad Sci U S A 104:10607–10612

    Article  CAS  PubMed  Google Scholar 

  45. de Azambuja E, Cardoso F, Meirsman L et al (2008) The new generation of breast cancer clinical trials: the right drug for the right target. Bull Cancer 95:352–357

    PubMed  Google Scholar 

  46. Tomasello G, de Azambuja E, Dinh P et al (2008) Jumping higher: is it still possible? The ALTTO trial challenge. Expert Rev Anticancer Ther 8:1883–1890

    Article  CAS  PubMed  Google Scholar 

  47. Xia W, Gerard CM, Liu L et al (2005) Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24:6213–6221

    Article  CAS  PubMed  Google Scholar 

  48. O’Shaughnessy J, Blackwell KL, Burstein H et al (2008) A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. J Clin Oncol 26:44S abstract 1015

    Article  Google Scholar 

  49. Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332–344

    Article  CAS  PubMed  Google Scholar 

  50. Pegram M, Chan D, Dichmann RA et al (2006) Phase II combined biological therapy targeting the HER-2 proto-oncogene and the vascular endothelial growth factor using trastuzumab (T) and bevacizumab (B) as first line treatment of HER2-amplified breast cancer. Breast Cancer Res Treat 100:S28 abstract 301

    Google Scholar 

  51. Perez EA, Romond EH, Suman VJ et al (2007) Updated results of the combined analysis of NCCTG N9831 and NSABP B-31 adjuvant chemotherapy with/without trastuzumab in patients with HER2-positive breast cancer. J Clin Oncol 25: abstract 512

Download references

Conflict of interest statement

No funds were received in support of this study. No benefits of any kind were or will be received from a commercial party directly or indirectly related to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Piccart-Gebhart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Azambuja, E., Bedard, P.L., Suter, T. et al. Cardiac toxicity with anti-HER-2 therapies-what have we learned so far?. Targ Oncol 4, 77–88 (2009). https://doi.org/10.1007/s11523-009-0112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-009-0112-2

Keywords

Navigation