Skip to main content

Advertisement

Log in

Semiautomated Radiosynthesis and Biological Evaluation of [18F]FEAU: A Novel PET Imaging Agent for HSV1-tk/sr39tk Reporter Gene Expression

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

2′-Deoxy-2′-[18F]fluoro-5-ethyl-1-β-d-arabinofuranosyluracil ([18F]FEAU) is a promising radiolabeled nucleoside designed to monitor Herpes Simplex Virus Type 1 thymidine kinase (HSV1-tk) reporter gene expression with positron emission tomography (PET). However, the challenging radiosynthesis creates problems for being able to provide [18F]FEAU routinely. We have developed a routine method using a commercial GE TRACERlab FX-FN radiosynthesis module with customized equipment to provide [18F]FEAU. All radiochemical yields are decay corrected to end-of-bombardment and reported as means ± SD. Radiofluorination (33 ± 8%; n = 4), bromination (85 ± 8%; n = 4), coupling reaction (83 ± 6%; n = 4), base hydrolysis steps, and subsequent high-performance liquid chromatography purification afforded purified [18F]FEAU β-anomer in 5 ± 1% overall yield (n = 3 runs) after ~5.5 h and a β/α-anomer ratio of 7.4. Radiochemical/chemical purities and specific activity exceeded 99% and 1.3 Ci/μmol (48 GBq/μmol), respectively. In cell culture, [18F]FEAU showed significantly (P < 0.05) higher accumulation in C6 cells expressing HSV1-tk/sr39tk as compared to wild-type C6 cells. Furthermore, [18F]FEAU showed slightly higher accumulation than 9-[4-[18F]fluoro-3-(hydroxymethyl)butylguanine ([18F]FHBG) in cells expressing HSV1-tk (P < 0.05), whereas [18F]FHBG showed significantly higher (P < 0.05) accumulation than [18F]FEAU in HSV1-sr39tk-expressing cells. micro-PET imaging of mice carrying tumor xenografts of C6 cells stably expressing HSV1-tk or HSV1-sr39tk are consistent with the cell uptake results. The [18F]FEAU mouse images also showed very low gastrointestinal signal with predominant renal clearance as compared to [18F]FHBG. The routine radiosynthesis of [18F]FEAU was successfully semiautomated using a commercial module along with customized equipment to provide the β-anomer in modest yields. Although further studies are needed, early results also suggest [18F]FEAU is a promising PET radiotracer for monitoring HSV1-tk reporter gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Penuelas I, Gambhir SS (2005) Imaging studies for evaluating gene therapy in translational research. Drug Discov Today Technol 2:335–343

    Article  CAS  Google Scholar 

  2. Min JJ, Gambhir SS (2004) Gene therapy progress and prospects. Noninvasive imaging of gene therapy in living subjects. Gene Therapy 11:115–125

    PubMed  CAS  Google Scholar 

  3. Watanabe KA, Reichman U, Hirota K, Lopez C, Fox JJ (1979) Nucleosides. 110, synthesis and antiherpes virus activity of some 2′-fluoro-2′deoxyarabinofuranosylpyrimidine nucleosides. J Med Chem 22:21–24

    Article  PubMed  CAS  Google Scholar 

  4. Watanabe KA, Su TL, Klein RS, et al. (1983) Nucleosides. 123. Synthesis of antiviral nucleosides: 5-substituted of 1-(2-deoxy-2-halogeno-β-d-arabinofuranosyl)cytosines and-uracils. some structure–activity relationships. J Med Chem 26:152–156

    Article  PubMed  CAS  Google Scholar 

  5. Watanabe KA, Su TL, Reichman U, Greenberg N, Lopez C, Fox JJ (1984) Nucleosides. 129. Synthesis of antiviral nucleosides: 5-alkenyl-1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)uracils. J Med Chem 27:91–94

    Article  PubMed  CAS  Google Scholar 

  6. Perlman ME, Watanabe KA, Schinazi RF, Fox JJ (1985) Nucleosides. 133. Synthesis of 5-alkenyl-1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)cytosines and related pyrimidine nucleosides as potential antiviral agents. J Med Chem 28:741–748

    Article  PubMed  CAS  Google Scholar 

  7. Su TL, Watanabe KA, Shinazi RF, Fox JJ (1986) Nucleosides. 136. Synthesis and antiviral effects of several 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-alkyluracils. Some structure–activity relationships. J Med Chem 29:151–154

    Article  PubMed  CAS  Google Scholar 

  8. Kang KW, Min J-J, Chen X, Gambhir SS (2005) Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 7:296–303

    Article  PubMed  Google Scholar 

  9. Buursma AR, Rutgers V, Hospers GAP, Mulder NH, Vaalburg W, de Vries EFJ (2006) [18F]FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in-vitro comparison with other PET tracers. Nucl Med Commun 27:25–30

    Article  PubMed  CAS  Google Scholar 

  10. Yaghoubi S, Barrio JR, Dahlbom M, et al. (2001) Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42:1225–1234

    PubMed  CAS  Google Scholar 

  11. Panuelas I, Mazzolini G, Boan JF, et al. (2005) Positron emission tomography imaging of adenoviral-mediated transgene expression in living cancer patients. Gastroenterology 128:1787–1795

    Article  Google Scholar 

  12. Panuelas I, Haberkorn U, Yaghoubi S, Gambhir SS (2005) Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging 32:S384–403

    Article  Google Scholar 

  13. Yaghoubi S, Couto MA, Chen C, et al. (2006) Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 Thymidine Kinase (HSV1-tk) or mutant HSV1-sr39tks expression. J Nucl Med 47:706–715

    PubMed  CAS  Google Scholar 

  14. Gambhir SS, Bauer E, Black ME, et al. (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA 97:2785–2790

    Article  PubMed  CAS  Google Scholar 

  15. Hajitou A, Trepel M, Lilley CE, et al. (2006) A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell 125:385–398

    Article  PubMed  CAS  Google Scholar 

  16. Alauddin MM, Conti PS, Fissekis JD (2002) Synthesis of [18F]-labeled 2′deoxy-2′fluoro-5-methyl-1-β-D-arabinofuranosyluracil ([18F]-FMAU). J Label Compd Radiopharm 45:583–590

    Article  CAS  Google Scholar 

  17. Mangner TJ, Klecker RW, Anderson L, Shields AF (2003) Synthesis of 2′-deoxy-2′-fluoro-5-methyl-1-β-D-arabinofuranosyl nucleosides, [18F]FAU, [18F]FMAU, [18F]FBAU, and [18F]FIAU, as potential PET agents for imaging cellular proliferation. Nucl Med Biol 30:215–224

    Article  PubMed  CAS  Google Scholar 

  18. Alauddin MM, Conti PS, Fissekis JD (2003) A general synthesis of 2′-deoxy-2′-fluoro-5-methyl-1-β-D-arabinofuranosyluracil and its 5-substituted nucleosides. J Label Compd Radiopharm 46:285–289

    Article  CAS  Google Scholar 

  19. Tann CH, Brodfuehrer PR, Brundidge SP, Sapino C, Howell HG (1985) Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil (β-FIAU) and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)thymine (β-FMAU). J Org Chem 50:3644–3647

    Article  CAS  Google Scholar 

  20. Wilds CJ, Damha MJ (2000) 2′-Deoxy-2′-fluoro-β-D-arabinonucleosides and oligonucleotides (2′F-ANA): synthesis and physicochemical studies. Nucleic Acids Res 28:3625–3635

    Article  PubMed  CAS  Google Scholar 

  21. Mansuri MM, Ghazzouli I, Chen MS, et al. (1987) 1-(2-Deoxy-2-fluoro-.beta.-D-arabinofuranosyl)-5-ethyluracil. A highly selective antiherpes simplex agent. J Med Chem 30:867–871

    Article  PubMed  CAS  Google Scholar 

  22. Howell HG, Brodfuehrer PR, Brundidge SP, Benigni DA, Sapino C (1988) Antiviral nucleosides. A stereospecific, total synthesis of 2′-fluoro-2′-deoxy-beta-D-arabinofuranosyl nucleosides. J Org Chem 53:85–88

    Article  CAS  Google Scholar 

  23. Ray P, Tsien R, Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67:3085–3093

    Article  PubMed  CAS  Google Scholar 

  24. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13:601–619

    Article  PubMed  CAS  Google Scholar 

  25. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  26. Min JJ, Iyer M, Gambhir SS (2003) Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs. stable transfection. Eur J Nucl Med Mol Imaging 30:1547–1560

    Article  PubMed  CAS  Google Scholar 

  27. Jacobs A, Tjuvajev JG, Dubrovin M, et al. (2001) Positron emission tomography-based Imaging of transgene expression mediated by replication-conditional, oncolytic Herpes Simplex Virus Type 1 mutant vectors in vivo. Cancer Res 61:2983–2995

    PubMed  CAS  Google Scholar 

  28. Tjuvajev JG, Doubrovin M, Akhurst T, et al. (2002) Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 43:1072–1083

    PubMed  Google Scholar 

  29. Tjuvajev JG, Stockhammer G, Desai R, et al. (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    PubMed  CAS  Google Scholar 

  30. Tjuvajev JG, Finn R, Watanabe K, et al. (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56:4087–4095

    PubMed  CAS  Google Scholar 

  31. Tjuvajev JG, Avril N, Oku T, et al. (1998) Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 58:4333–4341

    PubMed  CAS  Google Scholar 

  32. Tjuvajev JG, Chen SH, Joshi A, et al. (1999) Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 59:5186–5193

    PubMed  CAS  Google Scholar 

  33. Watanabe KA, Su TL, Reichman U, Greenberg N, Lopez C, Fox JJ (1984) Nucleosides. 129. Synthesis of antiviral nucleosides: 5-alkenyl-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)uracils. J Med Chem 1:91–94

    Article  Google Scholar 

  34. Perlman ME, Watanabe KA, Schinazi RF, Fox JJ (1985) Nucleosides. 133. Synthesis of 5-alkenyl-1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl) cytosines and related pyrimidine nucleosides as potential antiviral agents. J Med Chem 28:741–748

    Article  PubMed  CAS  Google Scholar 

  35. Kong XB, Vidal P, Tong WP, Chiang J, Gloff CA, Chou TC (1992) Preclinical pharmacology and pharmacokinetics of the anti-hepatitis virus agent 2′-fluoro-5-ethyl-1-beta-D-arabinofuranosyluracil in mice and rats. Antimicrob Agents Chemother 36:1472–1477

    PubMed  CAS  Google Scholar 

  36. Black ME, Newcomb TG, Wilson HM, Loeb LA (1996) Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA 93:3525–3529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by ICMIC P50 (SSG) and NIH R05 CA 082214 (SSG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S. Gambhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, F.T., Namavari, M., Levi, J. et al. Semiautomated Radiosynthesis and Biological Evaluation of [18F]FEAU: A Novel PET Imaging Agent for HSV1-tk/sr39tk Reporter Gene Expression. Mol Imaging Biol 10, 82–91 (2008). https://doi.org/10.1007/s11307-007-0122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0122-3

Key words

Navigation