Skip to main content

Advertisement

Log in

2-Deoxy-2-[F-18]fluoro-d-glucose-Positron Emission Tomography Sensitivity to Serum Glucose: A Survey and Diagnostic Applications

  • Original Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Objective

The positron emission tomography (PET) clinical utility of the sensitivity (γ) of uptake (Q) to a change in plasma glucose concentration (C) is investigated.

Methods

γ is obtained from data as [ln(Q 2/Q 1)] / [ln(C 2 / C 1)], using previously published intrapatient studies varying C within a single patient and some interpatient ones. It can be theoretically related to the half-saturation constant in the Michaelis–Menten quantification of competitive uptake. One of its uses is making uptake corrections for desired vs. actual C using \(Q_{2} = Q_{1} {\left( {{C_{2} } \mathord{\left/ {\vphantom {{C_{2} } {C_{1} }}} \right. \kern-\nulldelimiterspace} {C_{1} }} \right)}^{\gamma } .\)

Results

Intrapatient studies proved to be preferable to interpatient ones, and a 2-deoxy-2-[F-18]fluoro-d-glucose (FDG)-PET survey with analyses for γ yielded the following result: usually the γ values of tumors and brain tissues were near −1, whereas those of other noncerebral tissues were near 0. Regarding correcting uptakes for C, instead of a universally assumed and applied γ = −1, corrections should be for a single tissue using its known γ. An advantageous use of γ is predicting how C affects image contrast, including where glucose loading is sometimes preferable to fasting.

Conclusions

A potentially useful quantifier of uptake sensitivity to plasma glucose has been defined and values obtained. Correcting uptakes to some standard C requires special care. γ can help PET clinicians select fasting or loading to achieve glucose levels for optimum contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J, Ruotsalainen U, Joensuu H (1993) Influence of the blood glucose concentration on 18F-FDG uptake in cancer—a PET study. J Nucl Med 34:1–6

    PubMed  CAS  Google Scholar 

  2. Langen KJ, Braun U, Rota Kops E et al. (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34:355–359

    PubMed  CAS  Google Scholar 

  3. Zhuang HM, Cortes-Blanco A, Pourdehnad M et al. (2001) Do high glucose levels have differential effect on FDG uptake in inflammatory and malignant disorders? Nucl Med Commun 22:1123–1128

    Article  PubMed  CAS  Google Scholar 

  4. Diederichs CG, Staib L, Glatting G, Beger HG, Reske SN (1998) FDG PET: Elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med 39:1030–1033

    PubMed  CAS  Google Scholar 

  5. Koyama K, Okamura T, Kawabe J et al. (2001) Diagnostic usefulness of FDG PET for pancreatic mass lesions. Ann Nucl Med 15:217–224

    Article  PubMed  CAS  Google Scholar 

  6. Thie JA (1995) Clarification of a fractional uptake concept. J Nucl Med 36:711–712

    PubMed  CAS  Google Scholar 

  7. Nakamoto Y, Zasadny KR, Minn H, Wahl RL (2002) Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol 4:171–178

    Article  PubMed  Google Scholar 

  8. Devreese K, Leroux-Roels G (1993) Laboratory assessment of five glucose meters designed for self-monitoring of blood glucose concentration. Eur J Clin Chem Clin Biochem 31:829–837

    PubMed  CAS  Google Scholar 

  9. Ishizu K, Nishizawa S, Yonekura Y et al. (1994) Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 35:1104–1109

    PubMed  CAS  Google Scholar 

  10. Hasselbalch SG, Knudsen GM, Capaldo B, Postiglione A, Paulson OB (2001) Blood–brain barrier transport and brain metabolism of glucose during acute hyperglycemia in humans. J Clin Endocrinol Metab 86:1986–1990

    Article  PubMed  CAS  Google Scholar 

  11. Crippa F, Gavazzi C, Bozzetti F et al. (1997) The influence of blood glucose levels on [18F]fluorodeoxyglucose (FDG) uptake in cancer: A PET study in liver metastases from colorectal carcinomas. Tumori 83:748–752

    PubMed  CAS  Google Scholar 

  12. Tamaki N, Yonehura Y, Kawamoto M et al. (1991) Simple quantification of regional myocardial uptake of fluorine-18-deoxyglucose in the fasting condition. J Nucl Med 32:2152–2157

    PubMed  CAS  Google Scholar 

  13. Choi Y, Brunken RC, Hawkins RA et al. (1993) Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-d-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 20:308–318

    Article  PubMed  CAS  Google Scholar 

  14. Sadato N, Tsuchida T, Nakaumra S et al. (1998) Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumors. Eur J Nucl Med 25:559–564

    Article  PubMed  CAS  Google Scholar 

  15. Evans LS, Peachey NS, Marchese AL (1993) Comparison of three methods of estimating the parameters of the Naka-Rushton equation. Doc Ophthalmol 84:19–30

    Article  PubMed  CAS  Google Scholar 

  16. Ho CL, Dehdashti F, Griffeth LK, Buse PE, Balfe DM, Siegal BA (1996) FDG-PET evaluation of indeterminate pancreatic masses. J Comput Assist Tomogr 20:363–369

    Article  PubMed  CAS  Google Scholar 

  17. Stollfus JC, Glatting G, Friess H, Kocher F, Beger HG, Reske SN (1995) 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose PET in detection of pancreatic cancer: Value of quantitative image interpretation. Radiology 195:339–344

    Google Scholar 

  18. Avril N, Bense S, Ziegler SI et al. (1997) Breast imaging with fluorine-18-FDG PET: Quantitative image analysis. J Nucl Med 38:1186–1191

    PubMed  CAS  Google Scholar 

  19. Delbeke D, Rose DM, Chapman WC et al. (1999) Optimal interpretation of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 40:1784–1791

    PubMed  CAS  Google Scholar 

  20. Menda Y, Bushnell DL, Madsen MT, McLaughlin K, Kahn D, Kernstine KH (2001) Evaluation of various corrections to the standardized uptake value for diagnosis of pulmonary malignancy. Nucl Med Commun 22:1077–1081

    Article  PubMed  CAS  Google Scholar 

  21. Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R (2003) Simple quantification of skeletal muscle glucose utilization by static 18F-FDG PET. J Nucl Med 44:1592–1598

    PubMed  CAS  Google Scholar 

  22. Paquet N, Albert A, Foidart J, Hustinx R (2004) Within-patient variability of 18F-FDG: Standardized uptake values in normal tissues. J Nucl Med 45:784–788

    PubMed  CAS  Google Scholar 

  23. Thie JA, Hubner KF, Smith GT (2000) The diagnostic utility of the lognormal behavior of PET standardized uptake values in tumors. J Nucl Med 41:1664–1672

    PubMed  CAS  Google Scholar 

  24. Huang SC (2000) Anatomy of SUV. Nucl Med Biol 27:643–646

    Article  PubMed  CAS  Google Scholar 

  25. Thie JA (2004) Understanding the standardized uptake value (SUV), its methods, and implications for usage. J Nucl Med 45:1431–1434

    PubMed  Google Scholar 

  26. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA (2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 45:1519–1527

    PubMed  Google Scholar 

  27. Hallett WA, Marsden PK, Cronin BF, O'Doherty MJ (2001) Effect of corrections for blood glucose and body size on [18F]FDG PET standardized uptake values in lung cancer. Eur J Nucl Med 28:919–922

    Article  PubMed  CAS  Google Scholar 

  28. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82

    PubMed  CAS  Google Scholar 

  29. Thie JA, Smith GT, Hubner KF (2005) Enhancing characterization of tissue in PET imaging by using substrate concentration as a modulating probe. J Nucl Med 46: May Supplement. (Abstract)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Thie PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thie, J.A., Smith, G.T. & Hubner, K.F. 2-Deoxy-2-[F-18]fluoro-d-glucose-Positron Emission Tomography Sensitivity to Serum Glucose: A Survey and Diagnostic Applications. Mol Imaging Biol 7, 361–368 (2005). https://doi.org/10.1007/s11307-005-0018-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0018-z

Key words

Navigation