Skip to main content
Log in

Brown adipose tissue glyceroneogenesis is activated in rats exposed to cold

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

We have previously found that glyceroneogenesis is very active in brown adipose tissue (BAT) and increases in fasted, diabetic and high-protein-diet-fed rats, situations of reduced thermogenic activity. To understand better the role of glyceroneogenesis in BAT glycerol-3-phosphate (G3P) generation, we investigated its activity during cold exposure (10 days at 4°C), a condition in which, in contrast to the above situations, BAT thermogenesis is markedly activated. Rates of total (from all sources) BAT fatty acid (FA) synthesis and rates of incorporation of glucose carbon into BAT glyceride-FA and -glycerol in vivo were markedly increased by cold exposure. Cold exposure induced a marked increase in BAT glyceroneogenic activity, evidenced by (1) increased rates of non-glucose carbon incorporation into glyceride-glycerol in vivo and of [1-14C]-pyruvate incorporation into glyceride-glycerol in vitro, and (2) a threefold increase in phosphoenolpyruvate carboxykinase activity. Most of the glyceride-glycerol synthesized by BAT via glyceroneogenesis or from glucose was used to esterify preformed FA. This use was markedly increased by cold exposure, in parallel with a pronounced activation of BAT lipoprotein lipase activity. In conclusion, during cold exposure BAT glyceroneogenesis is markedly activated, contributing to increase the generation of G3P, which is mostly used to esterify preformed FA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antras-Ferry J, Le Bigot G, Robin P, Robin D, Forest C (1994) Stimulation of phosphoenolpyruvate carboxykinase gene expression by fatty acids. Biochem Biophys Res Commun 203:385–391

    Article  CAS  PubMed  Google Scholar 

  2. Baker N, Huebotter RJ (1972) Compartmental and semicompartmental approaches for measuring glucose carbon flux to fatty acids and other products in vivo. J Lipid Res 13:716–724

    CAS  PubMed  Google Scholar 

  3. Baker N, Huebotter RJ, Schotz MC (1965) Analysis of14C-glucose in tissues using thin layer chromatography. Anal Biochem 10:227–235

    CAS  PubMed  Google Scholar 

  4. Belfrage P, Vaughan M (1969) Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J Lipid Res 10:341–344

    CAS  PubMed  Google Scholar 

  5. Botion LM, Kettelhut IC, Migliorini RH (1995) Increased adipose tissue glyceroneogenesis in rats adapted to a high protein, carbohydrate-free diet. Horm Metab Res 27:310–313

    CAS  PubMed  Google Scholar 

  6. Brito MN, Brito NA, Migliorini RH (1992) Thermogenic capacity of brown adipose tissue is reduced in rats fed a high protein, carbohydrate-free diet. J Nutr 122:2081–2086

    CAS  PubMed  Google Scholar 

  7. Brito MN, Brito NA, Brito SRC, Moura MAF, Kawashita NH, Kettelhut IC, Migliorini RH (1999) Brown adipose tissue triacylglycerol synthesis in rats adapted to a high-protein, carbohydrate–free diet. Am J Physiol 276:R103–R1009

    PubMed  Google Scholar 

  8. Brito MN, Brito NA, Garofalo MAR, Kettelhut IC, Migliorini RH (1998) Sympathetic activity in brown adipose tissue from rats adapted to a high-protein, carbohydrate-free diet. J Auton Nerv Syst 69:1–5

    Article  CAS  PubMed  Google Scholar 

  9. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  10. Chang HC, Lane MD (1966) The enzymatic carboxylation of phosphoenolpyruvate. II. Purification and properties of liver mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem 241:2413–2420

    CAS  PubMed  Google Scholar 

  11. Duplus E, Glorian J, Tordjman J, Berge R, Forest C (2002) Evidence for selective induction of phosphoenolpyruvate carboxykinase gene expression by unsaturated and nonmetabolized fatty acids in adipocytes. J Cell Biochem 85:651–661

    Article  CAS  PubMed  Google Scholar 

  12. Festuccia WTL, Guerra-Sá R, Kawashita NH, Garófalo MAR, Evangelista EA, Rodrigues V, Kettelhut IC, Migliorini RH (2003) Expression of glycerokinase in brown adipose tissue is stimulated by the sympathetic nervous system. Am J Physiol 284:R1536–R1541

    CAS  Google Scholar 

  13. Festuccia WTL, Kawashita NH, Garófalo MAR, Moura MAF, Brito SRC, Kettelhut IC, Migliorini RH (2003) Control of glyceroneogenic activity in rat brown adipose tissue. Am J Physiol Regul Integr Comp Physiol 285: R177-R182

    CAS  PubMed  Google Scholar 

  14. Garófalo MAR, Kettelhut IC, Roselino JES, Migliorini RH (1996) Effect of acute cold exposure on norepinephrine turnover rates in rat white adipose tissue. J Auton Nerv Syst 60:206–208

    Article  PubMed  Google Scholar 

  15. Hendler RW (1964) Procedure for simultaneous assay of two β-emitting isotopes with the liquid scintillation counting technique. Anal Biochem 7:110–120

    Google Scholar 

  16. Himms-Hagen J (1989) Brown adipose tissue thermogenesis and obesity. Prog Lipid Res 28:67–115

    Article  CAS  PubMed  Google Scholar 

  17. Jungas R (1968) Fatty acid synthesis in adipose tissue incubated in tritiated water. Biochemistry 7:3708–3717

    CAS  PubMed  Google Scholar 

  18. Kawashita NH, Brito MN, Brito SRC, Moura MAF, Festuccia WTL, Garófalo MAR, Machado UF, Kettelhut IC, Migliorini RH (2002) Glucose uptake, glucose transporter GLUT4 and glycolytic enzymes in brown adipose tissue from rats adapted to a high-protein diet. Metabolism 51:1501–1505

    Article  CAS  PubMed  Google Scholar 

  19. Kawashita NH, Festuccia WTL, Brito MA, Moura MAF, Brito SRC, Garófalo MAR, Kettelhut IC, Migliorini RH (2002) Glycerokinase activity in brown adipose tissue: a sympathetic regulation? Am J Physiol 282:R1185–R1190

    CAS  Google Scholar 

  20. Kawashita NH, Moura MAF, Brito MN, Brito SRC, Garófalo MAR, Kettelhut IC, Migliorini RH (2002) Relative importance of sympathetic outflow and insulin in the reactivation of brown adipose tissue lipogenesis in rats adapted to a high-protein diet. Metabolism 51:343–349

    Article  CAS  PubMed  Google Scholar 

  21. Lowry OH, Rosebrough NJ, Patt OL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  22. Moura MAF, Kawashita NH, Brito SRC, Brito MN, Kettelhut IC, Migliorini RH (2001) Effect of cold acclimation on brown adipose tissue fatty acid synthesis in rats adapted to a high-protein, carbohydrate-free diet. Metabolism 50:1493–1498

    Article  CAS  PubMed  Google Scholar 

  23. Nilsson-Ehle P, Schotz MC (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17:536–541

    CAS  PubMed  Google Scholar 

  24. Reshef L, Hanson RW, Ballard FJ (1970) A possible physiological role for glyceroneogenesis in rat adipose tissue. J Biol Chem 245:5979–5984

    CAS  PubMed  Google Scholar 

  25. Shipley RA, Chudzik EB, Gibbons AP, Jonjedyk K, Brummond DO (1967) Rate of glucose transformation in the rat by whole body analysis after glucose-14C. Am J Physiol 213:1149–1158

    CAS  PubMed  Google Scholar 

  26. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    CAS  PubMed  Google Scholar 

  27. Tontonoz P, Hu E, Devine J, Beale EG, Spiegelman BM (1995) PPARγ2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene. Mol Cell Biol 15:351–357

    CAS  PubMed  Google Scholar 

  28. Tordjman J, Chauvet G, Quette J, Beale EG, Forst C, Antonie B (2003) Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 278:18785–18790

    Article  CAS  PubMed  Google Scholar 

  29. Tordjman J, Khazen W, Antoine B, Chauvet G, Quette J, Fouque F, Beale EG, Benelli C, Forest C (2004) Regulation of glyceroneogenesis and phosphoenolpyruvate carboxykinase by fatty acids, retinoic acids and thiazolidinediones: potential relevance to type 2 diabetes. Biochimie 85:1213–1218

    Article  Google Scholar 

  30. Windmueler HG, Spaeth AE (1966) Perfusion “in vivo” with tritium oxide to measure hepatic lipogenesis and lipid secretion. J Biol Chem 241:2891–2899

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Victor D. Galban, Neusa M.Z. Resano, and Elza Filippin for technical assistance. This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 01/10050-8 and 01/02944-9) and from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 513296/96).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato H. Migliorini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moura, M.A.F., Festuccia, W.T.L., Kawashita, N.H. et al. Brown adipose tissue glyceroneogenesis is activated in rats exposed to cold. Pflugers Arch - Eur J Physiol 449, 463–469 (2005). https://doi.org/10.1007/s00424-004-1353-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1353-7

Keywords

Navigation