Skip to main content

Advertisement

Log in

18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the usefulness of normalising intra-tumour tracer accumulation on 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to reference tissue uptake for characterisation of peripheral nerve sheath tumours (PNSTs) in neurofibromatosis type 1 (NF1) compared with the established maximum standardised uptake value (SUVmax) cut-off of >3.5.

Methods

Forty-nine patients underwent FDG PET/CT. Intra-tumour tracer uptake (SUVmax) was normalised to three different reference tissues (tumour-to-liver, tumour-to-muscle and tumour-to-fat ratios). Receiver operating characteristic (ROC) analyses were used out to assess the diagnostic performance. Histopathology and follow-up served as the reference standard.

Results

Intra-tumour tracer uptake correlated significantly with liver uptake (r s  = 0.58, P = 0.016). On ROC analysis, the optimum threshold for tumour-to-liver ratio was >2.6 (AUC = 0.9735). Both the SUVmax cut-off value of >3.5 and a tumour-to-liver ratio >2.6 provided a sensitivity of 100 %, but specificity was significantly higher for the latter (90.3 % vs 79.8 %; P = 0.013).

Conclusions

In patients with NF1, quantitative 18F-FDG PET imaging may identify malignant change in neurofibromas with high accuracy. Specificity could be significantly increased by using the tumour-to-liver ratio. The authors recommend further evaluation of a tumour-to-liver ratio cut-off value of >2.6 for diagnostic intervention planning.

Key Points

18 F-FDG PET/CT is used for detecting malignancy in PNSTs in NF1 patients

An SUV max cut-off value may give false-positive results for benign plexiform neurofibromas

Specificity can be significantly increased using a tumour-to-liver ratio

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Listernick R, Charrow J (1990) Neurofibromatosis type 1 in childhood. J Pediatr 116:845–853

    Article  CAS  PubMed  Google Scholar 

  2. Conference Statement (1988) Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45:575–578

  3. Ramanathan RC, Thomas JM (1999) Malignant peripheral nerve sheath tumours associated with von Recklinghausen’s neurofibromatosis. Eur J Surg Oncol 25:190–193

    Article  CAS  PubMed  Google Scholar 

  4. McGaughran JM, Harris DI, Donnai D et al (1999) A clinical study of type 1 neurofibromatosis in north west England. J Med Genet 36:197–203

    CAS  PubMed  Google Scholar 

  5. Ferner RE, Gutmann DH (2002) International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 62:1573–1577

    CAS  PubMed  Google Scholar 

  6. Ducatman BS, Scheithauer BW, Piepgras DG et al (1986) Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer 57:2006–2021

    Article  CAS  PubMed  Google Scholar 

  7. Evans DGR, Baser ME, McGaughran J et al (2002) Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39:311–314

    Article  CAS  PubMed  Google Scholar 

  8. Lawrence W, Donegan WL, Natarajan N et al (1987) Adult soft tissue sarcomas. A pattern of care survey of the American College of Surgeons. Ann Surg 205:349–359

    Article  PubMed  Google Scholar 

  9. Korf BR (1999) Plexiform neurofibromas. Am J Med Genet 89:31–37

    Article  CAS  PubMed  Google Scholar 

  10. Mautner VF, Hartmann M, Kluwe L et al (2006) MRI growth patterns of plexiform neurofibromas in patients with neurofibromatosis type 1. Neuroradiology 48:160–165

    Article  CAS  PubMed  Google Scholar 

  11. Tucker T, Wolkenstein P, Revuz J et al (2005) Association between benign and malignant peripheral nerve sheath tumors in NF1. Neurology 65:205–211

    Article  CAS  PubMed  Google Scholar 

  12. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11S–20S

    Article  CAS  PubMed  Google Scholar 

  13. Jaskowiak CJ, Bianco JA, Perlman SB, Fine JP (2005) Influence of reconstruction iterations on 18F-FDG PET/CT standardized uptake values. J Nucl Med 46:424–428

    PubMed  Google Scholar 

  14. Warbey VS, Ferner RE, Dunn JT et al (2009) [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging 36:751–757

    Article  CAS  PubMed  Google Scholar 

  15. Ferner RE, Golding JF, Smith M et al (2008) [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  CAS  PubMed  Google Scholar 

  16. Brenner W, Friedrich RE, Gawad KA et al (2006) Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 33:428–432

    Article  PubMed  Google Scholar 

  17. Benz MR, Czernin J, Dry SM et al (2010) Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer 116:451–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Salamon J, Derlin T, Bannas P et al (2012) Evaluation of intratumoural heterogeneity on (18)F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 40:685–692

    Article  PubMed  Google Scholar 

  19. Lindholm P, Minn H, Leskinen-Kallio S et al (1993) Influence of the blood glucose concentration on FDG uptake in cancer—a PET study. J Nucl Med 34:1–6

    CAS  PubMed  Google Scholar 

  20. Visvikis D, Cheze-LeRest C, Costa DC et al (2001) Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 28:1326–1335

    Article  CAS  PubMed  Google Scholar 

  21. Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45:1431–1434

    PubMed  Google Scholar 

  22. Meignan M, Gallamini A, Haioun C (2009) Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma 50:1257–1260

    Article  PubMed  Google Scholar 

  23. Barrington SF, Qian W, Somer EJ et al (2010) Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:1824–1833

    Article  PubMed  Google Scholar 

  24. Lee JW, Paeng JC, Kang KW et al (2009) Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for hepatocellular carcinoma. J Nucl Med 50:682–687

    Article  PubMed  Google Scholar 

  25. Trojani M, Contesso G, Coindre JM et al (1984) Soft-tissue sarcomas of adults; study of pathological prognostic variables and definition of a histopathological grading system. Int J Cancer 33:37–42

    Article  CAS  PubMed  Google Scholar 

  26. Lin BT, Weiss LM, Medeiros LJ (1997) Neurofibroma and cellular neurofibroma with atypia: a report of 14 tumors. Am J Surg Pathol 21:1443–1449

    Article  CAS  PubMed  Google Scholar 

  27. Treglia G, Taralli S, Bertagna F et al (2012) Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with neurofibromatosis type 1: a systematic review. Radiol Res Pract 2012:431029

  28. Khan MA, Combs CS, Brunt EM et al (2000) Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 32:792–797

    Article  CAS  PubMed  Google Scholar 

  29. Furth C, Amthauer H, Hautzel H et al (2011) Evaluation of interim PET response criteria in paediatric Hodgkin’s lymphoma—results for dedicated assessment criteria in a blinded dual-centre read. Ann Oncol 22:1198–1203

    Article  CAS  PubMed  Google Scholar 

  30. Eary JF, Link JM, Muzi M et al (2011) Multiagent PET for risk characterization in sarcoma. J Nucl Med 52:541–546

    Article  CAS  PubMed  Google Scholar 

  31. Buck AK, Herrmann K, Büschenfelde CM zum et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorodeoxythymidine. Clin Cancer Res 14:2970–2977

    Google Scholar 

  32. Wasa J, Nishida Y, Tsukushi S et al (2010) MRI features in the differentiation of malignant peripheral nerve sheath tumors and neurofibromas. AJR Am J Roentgenol 194:1568–1574

    Article  PubMed  Google Scholar 

  33. Matsumine A, Kusuzaki K, Nakamura T et al (2009) Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol 135:891–900

    Article  PubMed  Google Scholar 

  34. Derlin T, Tornquist K, Münster S et al (2013) Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med 38:e19–e25

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Victor F. Mautner and Thorsten Derlin contributed equally.

Parts of the cohort of patients in this retrospective study have been used for the evaluation of the relevance of intra-tumoural heterogeneity: Salamon J, Derlin T, Bannas P et al (2013) Evaluation of intra-tumoural heterogeneity on (18)F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 40:685-692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Salamon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salamon, J., Veldhoen, S., Apostolova, I. et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol 24, 405–412 (2014). https://doi.org/10.1007/s00330-013-3020-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3020-x

Keywords

Navigation