Skip to main content

Advertisement

Log in

Variability of 18F-FDG-positive lung lesion volume by thresholding

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the variability of 18F-FDG-positive volume measurements in lung cancer patients, obtained with different fixed percentages of maximum standard uptake value (SUVmax) thresholds.

Methods

PET dynamic acquisition involving ten frames was performed within 60–110 min post-injection in eight patients. In each lesion (n = 11), volume was automatically outlined in each frame with fixed 40–50–60–70 % of the SUVmax thresholds. Thus, ten volume values for each threshold (V40–50–60–70) were available to calculate relative SD (SDr), and hence relative measurement error (MEr) and repeatability (R). Dependence on SUVmax variability was also assessed.

Results

Mean SDr (<SDr>; %) of volume estimates was found to strongly correlate with threshold value (T; %): <SDr> = 1.626 × exp(0.044 × T) (r = 0.999; P < 0.01). MEr and R for V40 were found to be (95 % CL) 18.9 % and 26.7 %. For all fixed thresholds, in successive frames of an arbitrary lesion, volume estimate inversely correlated with SUVmax (P ≤ 0.02).

Conclusions

A formula allows estimation of the variability of 18F-FDG-positive volumes provided by any fixed percentage of SUVmax threshold, and hence by any thresholding method. It only necessitates conversion of the threshold value into the SUVmax percentage in order to aid quick estimation of volume variability magnitude in current clinical practice.

Key Points

In oncology, PET is widely used to assess the metabolic active volume

This paper investigates the variability of 18 F-FDG-positive volumes by thresholding

A formula is available for estimating this variability for any thresholding method

For 40 %-SUVmax threshold, measurement error and repeatability are (95 % CL) 18.9 %/26.7 %

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zasadny KR, Kison PV, Francis IR, Wahl RL (1998) FDG-PET determination of metabolically active tumor volume and comparison with CT. Clin Positron Imaging 1:123–129

    Article  PubMed  Google Scholar 

  2. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, Humm JL (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509

    Article  PubMed  CAS  Google Scholar 

  3. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A (2007) Segmentation of PET volumes by iterative image thresholding. J Nucl Med 48:108–114

    PubMed  CAS  Google Scholar 

  4. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V (2003) Tridimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of the reconstruction algorithms. Radiother Oncol 69:247–250

    Article  PubMed  Google Scholar 

  5. Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, Yan D (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 690:1272–1282

    Article  Google Scholar 

  6. Nestle U, Schaefer-Schuler A, Kremp S, Groeschel A, Hellwig D, Rube C, Lirsch CM (2007) Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:453–462

    Article  PubMed  Google Scholar 

  7. Visser EP, Boerman OC, Oyen WJG (2010) SUV: from silly useless value to smart uptake value. J Nucl Med 51:173–175

    Article  PubMed  Google Scholar 

  8. Bland JM, Altman DG (1996) Statistics notes: Measurement error. BMJ 313:744–746

    Article  PubMed  CAS  Google Scholar 

  9. Bland JM, Altman DG (1996) Statistics notes: Measurement error proportional to the mean. BMJ 313:106–108

    Article  PubMed  CAS  Google Scholar 

  10. De Ruysscher D, Nestle U, Jeraj R, MacManus M (2012) PET scans in radiotherapy planning of lung cancer. Lung Cancer 75:141–145

    Article  PubMed  Google Scholar 

  11. Feng M, Kong F-M, Gross M, Fernando S, Hayman JA, Ten Haken RK (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 73:1228–1234

    Article  PubMed  Google Scholar 

  12. Edet-Sanson A, Dubray B, Doyeux K, Back A, Hapdey S, Modzelewski R, Bohn P, Gardin I, Vera P (2011) Serial assessment of FDG-PET uptake and functional volume during radiotherapy (RT) in patients with non-small cell lung cancer (NSCLC). Radiother Oncol 102:251–257

    Article  PubMed  Google Scholar 

  13. Tylski P, Stute S, Grotus N, Doyeux K, Hapdey S, Gardin I, Vanderlinden B, Buvat I (2010) Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J Nucl Med 51:268–276

    Article  PubMed  Google Scholar 

  14. Frings V, de Langen AJ, Smit EF, van Helden FH, Hoekstra OS, van Tinteren H, Boellaard (2010) Repeatability of metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med 51:1870–1877

    Article  PubMed  Google Scholar 

  15. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945

    Article  PubMed  Google Scholar 

  16. de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, Boers M, Smit EF, Stroobants S, Weber WA, Hoekstra OS (2012) Repeatability of 18F-FDG uptake measurements in tumours: a meta-analysis. J Nucl Med 53:701–708

    Article  PubMed  Google Scholar 

  17. Boellaard R (2011) Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med 52:93S–100S

    Article  PubMed  Google Scholar 

  18. Laffon E, de Clermont H, Marthan R (2011) A method of adjusting SUV for injection-acquisition time differences in 18F-FDG PET imaging. Eur Radiol 21:2417–2424

    Article  PubMed  Google Scholar 

  19. Nakamoto Y, Zadsadny KR, Minn H, Wahl R (2002) Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-Deoxy-2-[18F]Fluoro-D-Glucose. Molecular Imaging and Biology 4:171–178

    Article  PubMed  Google Scholar 

  20. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L (2007) The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumors. J Thor Oncol 2:706–714

    Article  Google Scholar 

  21. Giraud P, Antoine M, Larrouy A, Milleron B, Callard P, De Rycke Y, Carette MF, Rosenwald JC, Cosset JM, Housset M, Touboul E (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48:1015–1024

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Laffon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laffon, E., de Clermont, H. & Marthan, R. Variability of 18F-FDG-positive lung lesion volume by thresholding. Eur Radiol 23, 1131–1137 (2013). https://doi.org/10.1007/s00330-012-2672-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2672-2

Keywords

Navigation