Skip to main content

Advertisement

Log in

PET/MRI hybrid imaging: devices and initial results

  • Nuclear Medicine
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The combination of functional and morphological imaging technologies such as positron emission tomography (PET) and X-ray computed tomography (CT) has shown its value in the clinical and preclinical field. However, CT provides only very limited soft-tissue contrast and exposes the examined patient or laboratory animal to a high X-ray radiation dose. In comparison to CT, magnetic resonance tomography (MRI) provides excellent soft-tissue contrast and allows for nuclear magnetic resonance spectroscopy (NMRS) or functional MRI (fMRI). Thus, the combination of PET and MRI has been pursued for several years. First approaches have succeeded using conventional photo multiplier tube (PMT) technology together with light fibers to transfer scintillation light away from the high magnetic field. Latest PET/MRI developments use solid-state light detectors that can be operated even at high magnetic fields. Initial pilot studies with prototype animal PET/MRI systems have shown promising results by combining high resolution morphology with multifunctional information isochronously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pietrzyk U, Herholz K, Heiss WD (1990) Three-dimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 14(1):51–59

    Article  PubMed  CAS  Google Scholar 

  2. Slomka PJ (2004) Software approach to merging molecular with anatomic information. J Nucl Med 45(Suppl 1):36S–45S

    PubMed  Google Scholar 

  3. Pelizzari CA et al (1989) Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13(1):20–26

    Article  PubMed  CAS  Google Scholar 

  4. Myers R (2002) The application of PET-MR image registration in the brain. Br J Radiol 75(Spec No):S31–S35

    PubMed  Google Scholar 

  5. Kapouleas I et al (1991) Registration of three-dimensional MR and PET images of the human brain without markers. Radiology 181(3):731–739

    PubMed  CAS  Google Scholar 

  6. Goerres GW et al (2003) PET/CT of the abdomen: optimizing the patient breathing pattern. Eur Radiol 13:734–739

    Article  PubMed  Google Scholar 

  7. Somer EJ et al (2003) PET-MR image fusion in soft tissue sarcoma: accuracy, reliability and practicality of interactive point-based and automated mutual information techniques. Eur J Nucl Med Mol Imaging 30(1):54–62

    Article  PubMed  Google Scholar 

  8. Townsend DW (2001) A combined PET/CT scanner: the choices. J Nucl Med 42(3):533–534

    PubMed  CAS  Google Scholar 

  9. Beyer T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    PubMed  CAS  Google Scholar 

  10. Pfannenberg AC et al (2007) Value of contrast-enhanced multi-phase CT in combined PET/CT protocols for oncological imaging. Br J Radiol 80(954):437–445

    Article  PubMed  CAS  Google Scholar 

  11. Ell PJ (2005) PET/CT in oncology: a major technology for cancer care. Chang Gung Med J 28(5):274–283

    PubMed  Google Scholar 

  12. Bar-Shalom R et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209

    PubMed  Google Scholar 

  13. Antoch G et al (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22(21):4357–4368

    Article  PubMed  Google Scholar 

  14. Ell PJ, von Schulthess GK (2002) PET/CT: a new road map. Eur J Nucl Med Mol Imaging 29(6):719–720

    Article  PubMed  Google Scholar 

  15. Townsend DW et al (2004) PET/CT today and tomorrow. J Nucl Med 45(Suppl 1):4S–14S

    PubMed  Google Scholar 

  16. Brix G et al (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46(4):608–613

    PubMed  CAS  Google Scholar 

  17. Muller-Horvat C et al (2006) Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 42(3):342–350

    Article  PubMed  Google Scholar 

  18. Townsend DW, Beyer T, Blodgett TM (2003) PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 33(3):193–204

    Article  PubMed  Google Scholar 

  19. Schmand M et al (2007) BrainPET: first human tomograph for simultaneous (functional) PET and MR imaging. J Nucl Med 48(Suppl):45P

    Google Scholar 

  20. Schlemmer HP et al (2007) Simultaneous MR/PET for brain imaging: dirst patient scans. J Nucl Med 48(Suppl):45P

    Google Scholar 

  21. Casey ME, Nutt R (1986) A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Article  Google Scholar 

  22. Surti S et al (2007) Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 48(3):471–480

    PubMed  Google Scholar 

  23. Teras M et al (2007) Performance of the new generation of whole-body PET/CT scanners: Discovery STE and Discovery VCT. Eur J Nucl Med Mol Imaging 34(10):1683–1692

    Article  PubMed  CAS  Google Scholar 

  24. Martinez MJ et al (2006) PET/CT Biograph Sensation 16. Performance improvement using faster electronics. Nuklearmediziner 45(3):126–133

    Google Scholar 

  25. Chatziioannou AF et al (1999) Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40(7):1164–1175

    PubMed  CAS  Google Scholar 

  26. Tai C et al (2001) Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 46(7):1845–1862

    Article  PubMed  CAS  Google Scholar 

  27. Tai YC et al (2003) MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 48(11):1519–1537

    Article  PubMed  Google Scholar 

  28. Tai YC et al (2005) Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 46(3):455–463

    PubMed  Google Scholar 

  29. Huisman MC et al (2006) Performance evaluation of the Philips MOSAIC small animal PET scanner. Eur J Nucl Med Mol Imaging 34(4):532–540

    Article  PubMed  Google Scholar 

  30. Pichler B et al (1998) Studies with a prototype high resolution PET scanner based on LSO-APD modules. IEEE Trans Nucl Sci 45(3):1298–1302

    Article  Google Scholar 

  31. Pichler BJ et al (2004) Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Phys Med Biol 49(18):4305–4319

    Article  PubMed  CAS  Google Scholar 

  32. Lecomte R et al (1996) Initial results from the Sherbrooke avalanche photodiode positron tomograph. IEEE Trans Nucl Sci 43(3):1952–1957

    Article  Google Scholar 

  33. Pichler B et al (1998) Performance test of a LSO-APD PET module in a 9.4 Tesla magnet. IEEE Nucl Sci Symp Med Imaging Conf Iss 2:1237–1239

    Article  Google Scholar 

  34. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    Article  PubMed  CAS  Google Scholar 

  35. Camacho CR, Plewes DB, Henkelman RM (1995) Nonsusceptibility artifacts due to metallic objects in MR imaging. J Magn Reson Imaging 5(1):75–88

    Article  PubMed  CAS  Google Scholar 

  36. Graaf D (1998) In-vivo NMR spectroscopy: principles and techniques, 2nd edn. Wiley, Chichester

    Google Scholar 

  37. Graf H et al (2006) Effects on MRI due to altered rf polarization near conductive implants or instruments. Med Phys 33(1):124–127

    Article  PubMed  Google Scholar 

  38. Price RR et al (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1. Med Phys 17(2):287–295

    Article  PubMed  CAS  Google Scholar 

  39. Graf H et al (2005) RF artifacts caused by metallic implants or instruments which get more prominent at 3 T: an in vitro study. Magn Reson Imaging 23(3):493–499

    Article  PubMed  Google Scholar 

  40. Yamamoto S, Kuroda K, Senda M (2002) Scintillator selection for MR compatible gamma detectors. IEEE Nucl Sci Symp Conf Rec 3:1632–1635

    Google Scholar 

  41. Strul D et al (2003) Gamma shielding materials for MR-compatible PET. IEEE Trans Nucl Sci 50(1):60

    Article  CAS  Google Scholar 

  42. Mackewn JE et al (2005) Design and development of an MR-compatible PET scanner for imaging small animals. IEEE Trans Nucl Sci 52(5):1376

    Article  Google Scholar 

  43. Pichler BJ et al (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47(4):639–647

    PubMed  Google Scholar 

  44. Shao Y et al (1997) Development of a PET detector system compatible with MRI/NMR systems. IEEE Trans Nucl Sci 44(3):1167–1171

    Article  CAS  Google Scholar 

  45. Cherry SR et al (1996) Optical fiber readout of scintillator arrays using a multi-channel PMT: a high resolution PET detector for animal imaging. IEEE Trans Nucl Sci 43(3):1932–1937

    Article  Google Scholar 

  46. Marsden PK, Strul D, Keevil SF, Williams SCR, Cash D (2002) Simultaneous PET and NMR. Br J Radiol 75(Spec No):S53–S59

    PubMed  Google Scholar 

  47. Raylman RR et al (2006) Simultaneous MRI and PET imaging of a rat brain. Phys Med Biol 51(24):6371–6639

    Article  PubMed  Google Scholar 

  48. Kinahan PE et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25(10):2046–2053

    Article  PubMed  CAS  Google Scholar 

  49. Ostertag H et al (1989) Measured attenuation correction methods. Eur J Nucl Med 15(11):722–726

    Article  PubMed  CAS  Google Scholar 

  50. Zaidi H, Montandon ML, Slosman DO (2003) Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography. Med Phys 30(5):937–948

    Article  PubMed  Google Scholar 

  51. Zavaljevski A et al (2000) Multi-level adaptive segmentation of multi-parameter MR brain images. Comput Med Imaging Graph 24(2):87–98

    Article  PubMed  CAS  Google Scholar 

  52. Montandon ML, Zaidi H (2005) Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging. Neuroimage 25(1):278–286

    Article  PubMed  Google Scholar 

  53. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47(12):1968–1976

    PubMed  Google Scholar 

  54. Judenhofer MS, Catana C, Swann BK, et al (2007) Simultaneous PET/MR images, acquired with a compact MRI compatible PET detector in a 7 Tesla magnet. Radiology 244(3):807–814

    Article  PubMed  Google Scholar 

  55. Garlick PB et al (1997) PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 10(3):138–142

    Article  PubMed  CAS  Google Scholar 

  56. Lucas AJ et al (2006) Development of a combined microPET-MR system. Technol Cancer Res Treat 5(4):337–341

    PubMed  CAS  Google Scholar 

  57. Gilbert KM et al (2006) Design of field-cycled magnetic resonance systems for small animal imaging. Phys Med Biol 51(11):2825–2841

    Article  PubMed  CAS  Google Scholar 

  58. Handler WB et al (2006) Simulation of scattering and attenuation of 511 keV photons in a combined PET/field-cycled MRI system. Phys Med Biol 51(10):2479–2491

    Article  PubMed  Google Scholar 

  59. Pichler BJ et al (2001) A 4 x 8 APD Array, consisting of two monolithic silicon wafers, coupled to a 32-channel LSO matrix for high-resolution PET. IEEE Trans Nucl Sci 48(4):1391–1396

    Article  Google Scholar 

  60. Shah KS et al (2002) Position-sensitive avalanche photodiodes for gamma-ray imaging. IEEE Trans Nucl Sci 49(4):1687

    Article  CAS  Google Scholar 

  61. Habte F et al (2007) Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography. Phys Med Biol 52(13):3753–3772

    Article  PubMed  CAS  Google Scholar 

  62. Callaghan P (1991) Principles of nuclear magnetic resonance microscopy. Oxford Science, Oxford

    Google Scholar 

  63. Jacobs RE, Cherry SR (2001) Complementary emerging techniques: high-resolution PET and MRI. Curr Opin Neurobiol 11(5):621–629

    Article  PubMed  CAS  Google Scholar 

  64. Tyszka JM, Fraser SE, Jacobs RE (2005) Magnetic resonance microscopy: recent advances and applications. Curr Opin Biotechnol 16(1):93–99

    Article  PubMed  CAS  Google Scholar 

  65. Hammer BE, Christensen NL, Heil BG (1994) Use of a magnetic field to increase the spatial resolution of positron emission tomography. Med Phys 21(12):1917–1920

    Article  PubMed  CAS  Google Scholar 

  66. Boone JM, Velazquez O, Cherry SR (2004) Small-animal X-ray dose from micro-CT. Mol Imaging 3(3):149–158

    Article  PubMed  Google Scholar 

  67. Lamare F et al (2007) Respiratory motion correction for PET oncology applications using affine transformation of list mode data. Phys Med Biol 52(1):121–140

    Article  PubMed  CAS  Google Scholar 

  68. Catana C, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Cherry SR (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47(12):1968–1976

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd J. Pichler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichler, B.J., Judenhofer, M.S. & Wehrl, H.F. PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18, 1077–1086 (2008). https://doi.org/10.1007/s00330-008-0857-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-008-0857-5

Keywords

Navigation