Skip to main content
Log in

First performance evaluation of a dual-source CT (DSCT) system

  • Computer Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 April 2006

Abstract

We present a performance evaluation of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of 90°. We introduce the system concept and derive its consequences and potential benefits for echocardiograph (ECG)-controlled cardiac CT and for general radiology applications. We evaluate both temporal and spatial resolution by means of phantom scans. We present first patient scans to illustrate the performance of DSCT for ECG-gated cardiac imaging, and we demonstrate first results using a dual-energy acquisition mode. Using ECG-gated single-segment reconstruction, the DSCT system provides 83 ms temporal resolution independent of the patient’s heart rate for coronary CT angiography (CTA) and evaluation of basic functional parameters. With dual-segment reconstruction, the mean temporal resolution is 60 ms (minimum temporal resolution 42 ms) for advanced functional evaluation. The z-flying focal spot technique implemented in the evaluated DSCT system allows 0.4 mm cylinders to be resolved at all heart rates. First clinical experience shows a considerably increased robustness for the imaging of patients with high heart rates. As a potential application of the dual-energy acquisition mode, the automatic separation of bones and iodine-filled vessels is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ohnesorge B, Flohr T, Becker C, Kopp A, Schoepf U, Baum U, Knez A, Klingenbeck Regn K, Reiser M (2000) Cardiac imaging by means of electro- cardiographically gated multisection spiral CT-initial experience. Radiology 217:564–571

    PubMed  CAS  Google Scholar 

  2. Kachelriess M, Ulzheimer S, Kalender W (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27:1881–1902

    Article  PubMed  CAS  Google Scholar 

  3. Taguchi K, Anno H (2000) High temporal resolution for multi-slice helical computed tomography. Med Phys 27(5):861–872

    Article  PubMed  CAS  Google Scholar 

  4. Hong C, Becker CR, Huber A, Schoepf UJ, Ohnesorge B, Knez A, Brüning R, Reiser MF (2001) ECG-gated reconstructed multi-detector row CT coronary angiography: effect of varying trigger delay on image quality. Radiology 220:712–717

    PubMed  CAS  Google Scholar 

  5. Achenbach S, Ulzheimer S, Baum U et al (2000) Noninvasive coronary angiography by retrospectively ECG-gated multi-slice spiral CT. Circulation 102:2823–2828

    PubMed  CAS  Google Scholar 

  6. Becker C, Knez A, Ohnesorge B, Schöpf U, Reiser M (2000) Imaging of non calcified coronary plaques using helical CT with retrospective EKG gating. AJR Am J Roentgenol175:423–424

    CAS  Google Scholar 

  7. Knez A, Becker C, Leber A, Ohnesorge B, Reiser M, Haberl R (2000) Non-invasive assessment of coronary artery stenoses with multidetector helical computed tomography. Circulation 101:e221–e222

    PubMed  CAS  Google Scholar 

  8. Nieman K, Oudkerk M, Rensing B, van Oijen P, Munne A, van Geuns R, de Feyter P (2001) Coronary angiography with multi-slice computed tomography. Lancet 357:599–603

    Article  PubMed  CAS  Google Scholar 

  9. Schroeder S, Kopp A, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen C, Karsch K (2001) Noninvasive detection and evaluation of atherosclerotic coronary plaques with multi-slice computed tomography. J Am Coll Cardiol 37(5):1430–1435

    Article  PubMed  CAS  Google Scholar 

  10. Schroeder S, Flohr T, Kopp A F, Meisner C, Kuettner A, Herdeg C, Baumbach A, Ohnesorge B (2001) Accuracy of density measurements within plaques located in artificial coronary arteries by X-ray multislice CT: results of a phantom study. J Comput Assist Tomogr 25(6):900–906

    Article  PubMed  CAS  Google Scholar 

  11. Kopp AF, Ohnesorge B, Becker C, Schröder S, Heuschmid M, Küttner A, Kuzo R, Claussen CD (2002) Reproducibility and accuracy of coronary calcium measurement with multidetector-row versus electron beam CT. Radiology 225:113–119

    PubMed  CAS  Google Scholar 

  12. Becker CR, Kleffel T, Crispin A, Knez A, Young Y, Schöpf UJ, Haberl R, Reiser MF (2001) Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. AJR Am J Roentgenol 176:1295–1298

    CAS  Google Scholar 

  13. Juergens KU, Grude M, Fallenberg EM, Heindel W, Fischbach R (2002) Using ECG-gated multidetector CT to evaluate global left ventricular myocardial function in patients with coronary artery disease. AJR Am J Roentgenol 179:1545–1550

    Google Scholar 

  14. Kopp A, Schröder S, Küttner A et al (2001) Coronary arteries: retrospectively ECG-gated multidetector row CT angiography with selective optimization of the image reconstruction window. Radiology 221:683–688

    PubMed  CAS  Google Scholar 

  15. Flohr T, Bruder H, Stierstorfer K, Simon J, Schaller S, Ohnesorge B (2002) New technical developments in multislice CT, part 2: sub-millimeter 16-slice scanning and increased gantry rotation speed for cardiac imaging. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 174:1022–1027

    Article  PubMed  CAS  Google Scholar 

  16. Flohr T, Schoepf UJ, Kuettner A, Halliburton S, Bruder H, Suess C, Schmidt B, Hofmann L, Yucel E K, Schaller S, Ohnesorge B (2003) Advances in cardiac imaging with 16-section CT-systems. Acad Radiol 10:386–401

    Article  PubMed  Google Scholar 

  17. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ (2002) Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 106:2051–2054

    Article  PubMed  Google Scholar 

  18. Ropers D, Baum U, Pohle K et al (2003) Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction. Circulation 107:664–666

    Article  PubMed  Google Scholar 

  19. Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C, Claussen CD, Kopp AF, Schroeder S (2005) Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution. Heart 91(7):938–941

    Article  PubMed  CAS  Google Scholar 

  20. Kuettner A, Beck T, Drosch T, Kettering K, Heuschmid M, Burgstahler C, Claussen CD, Kopp AF, Schroeder S (2005) Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 45(1):123–127

    Article  PubMed  Google Scholar 

  21. Flohr T, Stierstorfer K, Raupach R, Ulzheimer S, Bruder H (2004) Performance evaluation of a 64-slice CT-system with z-flying focal spot. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:1803–1810

    Article  PubMed  CAS  Google Scholar 

  22. Leber A W, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography. J Am Coll Cardiol 46(1):147–154

    Article  PubMed  Google Scholar 

  23. Raff G L, Gallagher M J, O’Neill W W, Goldstein J A (2005) Diagnostic accuracy of non-invasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557

    Article  PubMed  Google Scholar 

  24. Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T, Serruys PW, Krestin GP, de Feyter PJ (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–2323

    Article  PubMed  Google Scholar 

  25. Wintersperger BJ, Nikolaou K, von Ziegler F et al (2005) Image quality and reconstruction timing of 64-slice coronary CT augiography with 0.33s/360° rotation speed (in press)

  26. Halliburton SS, Stillman AE, Flohr T, Ohnesorge B, Obuchowski N, Lieber M, Karim W, Kuzmiak S, Kasper JM, White RD (2003) Do segmented reconstruction algorithms for cardiac multi-slice computed tomography improve image quality? Herz 28(1):20–31

    Article  PubMed  Google Scholar 

  27. Budoff M, Georgiou D, Brody A et al (1996) Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease: a multicenter study. Circulation 93:898–904

    PubMed  CAS  Google Scholar 

  28. Wielopolski P, van Geuns R, de Feyter P, Oudkerk M (1998) Coronary arteries. Eur Radiol 8:873–885

    Article  PubMed  CAS  Google Scholar 

  29. Achenbach S, Moshage W, Ropers D, Bachmann K (1998) Curved multiplanar reconstructions for the evaluation of contrast-enhanced electron-beam CT of the coronary arteries. AJR Am J Roentgenol 170:895–899

    CAS  Google Scholar 

  30. Becker C, Knez A, Jakobs T et al (1999) Detection and quantification of coronary artery calcification with electron-beam and conventional CT. Eur Radiol 9:620–624

    Article  PubMed  CAS  Google Scholar 

  31. McCollough CH, Zink FE (1994) The technical design and performance of ultrafast computed tomography. Radiol Clin North Am 32(3):521–536

    PubMed  CAS  Google Scholar 

  32. McCollough CH, Zink FE, Morin R (1994) Radiation dosimetry for electron beam CT. Radiology 192(3):637–643

    PubMed  CAS  Google Scholar 

  33. McCollough CH, Kanal KM, Lanutti N, Ryan KJ (1999) Experimental determination of section sensitivity profiles and image noise in electron beam computed tomography. Med Phys 26(2):287–295

    Article  PubMed  CAS  Google Scholar 

  34. Robb R, Ritman E (1979) High speed synchronous volume computed tomography of the heart. Radiology 133:655–661

    PubMed  CAS  Google Scholar 

  35. Ritman E, Kinsey J, Robb R, Gilbert B, Harris L, Wood E (1980) Three-dimensional imaging of heart, lungs, and circulation. Science 210:273–280

    PubMed  CAS  Google Scholar 

  36. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough C H (2005) Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. Med Phys 32(8):2536–2547

    Article  PubMed  CAS  Google Scholar 

  37. Schardt P, Deuringer J, Freudenberger J, Hell E, Knuepfer W, Mattern D, Schild M (2004) New X-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med Phys 31(9):2699–2706

    Article  PubMed  Google Scholar 

  38. Parker D (1982) Optimal short scan convolution reconstruction for fanbeam CT. Med Phys 9(2):254–257

    Article  PubMed  CAS  Google Scholar 

  39. Flohr T, Ohnesorge B (2001) Heart rate adaptive optimization of spatial and temporal resolution for ECG-gated multi-slice spiral CT of the heart. J Comput Assist Tomogr 25(6):907–923

    Article  PubMed  CAS  Google Scholar 

  40. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339

    Article  PubMed  CAS  Google Scholar 

  41. Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13(3):340–343

    Article  PubMed  CAS  Google Scholar 

  42. Achenbach S, Ropers D, Holle J, et al (2000) In-plane coronary arterial motion velocity: measurement with electron beam CT. Radiology 216:457–463

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Flohr.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00330-006-0158-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flohr, T.G., McCollough, C.H., Bruder, H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16, 256–268 (2006). https://doi.org/10.1007/s00330-005-2919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2919-2

Keywords

Navigation