Skip to main content
Log in

Imaging of gynecologic malignancies with FDG PET–CT: case examples, physiolocic activity, and pitfalls

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

The utilization of 2-[fluorine 18] fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in combination with computed tomography (CT) in the assessment of gynecologic malignancies has been rapidly growing in recent years; however, its role in clinical practice has yet to be established. A number of pitfalls are commonly encountered, including normal physiologic activity in bowel loops and blood vessels, or focal retained activity in ureters and urinary bladder. Increased uptake has also been reported in many benign pelvic processes and in premenopausal patients; endometrial activity changes cyclically, whereas increased ovarian uptake may be functional. FDG PET–CT has an emerging role in staging nodal disease and in the evaluation of local recurrence or peritoneal spread of gynecologic malignancies and is also useful in monitoring response to therapy and in long-term follow-up. FDG PET–CT is most suitable in patients with high tumor markers and negative or uncertain conventional imaging data. Patient preparation, proper scanning protocol, combined assessment of PET and CT data, and the evaluation of conventional imaging findings are essential to define disease and to avoid diagnostic pitfalls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Wahl RL (2004) Why nearly all PET of abdominal and pelvic cancers will be performed as PET/CT. J Nucl Med 45:82S–95S

    PubMed  Google Scholar 

  2. Koyama K, Okamura T, Kawabe J, et al. (2003) Evaluation of 18F-FDG PET with bladder irrigation in patients with uterine and ovarian tumors. J Nucl Med 44(3):353–358

    PubMed  Google Scholar 

  3. Sugawara Y, Eisbruch A, Kosuda S, et al. (1999) Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 40(7):1125–1131

    PubMed  CAS  Google Scholar 

  4. Lai CH, Huang KG, See LC, et al. (2004) Restaging of recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-d-glucose positron emission tomography. Cancer 100(3):544–552

    Article  PubMed  Google Scholar 

  5. Kim SK, Kang KW, Roh JW, et al. (2005) Incidental ovarian 18F-FDG accumulation on PET: correlation with the menstrual cycle. Eur J Nucl Med Mol Imaging 32(7):757–763

    Article  PubMed  CAS  Google Scholar 

  6. Nishizawa S, Inubushi M, Okada H (2005) Physiological 18F-FDG uptake in the ovaries and uterus of healthy female volunteers. Eur J Nucl Med Mol Imaging 32(5):549–556

    Article  PubMed  Google Scholar 

  7. Lerman H, Metser U, Grisaru D, et al. (2004) Normal and abnormal 18F-FDG endometrial and ovarian uptake in pre- and postmenopausal patients: assessment by PET/CT. J Nucl Med 45(2):266–271

    PubMed  Google Scholar 

  8. Hempling RE (1996) Handbook of gynecologic oncology, 2nd edn. Boston: Little Brown, pp 103–130

    Google Scholar 

  9. Toita T, Nakano M, Higashi M, et al. (1995) Prognostic value of cervical size and pelvic lymph node status assessed by computed tomography for patients with uterine cervical cancer treated by radical radiation therapy. Int J Radiat Oncol Biol Phys 33(4):843–849

    PubMed  CAS  Google Scholar 

  10. Yen TC, See LC, Lai CH, et al. (2004) 18F-FDG uptake in squmous cell carcinoma of the cervix is correlated with glucose transporter 1 expression. J Nucl Med 45(1):22–29

    PubMed  CAS  Google Scholar 

  11. Nicolet V, Carignan L, Bourdon F, et al. (2000) MR imaging of cervical carcinoma: a practical staging approach. Radiographics 20(6):1539–1549

    PubMed  CAS  Google Scholar 

  12. Scheidler J, Hricak H, Yu KK, et al. (1997) Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis. JAMA 278(13):1096–1101

    Article  PubMed  CAS  Google Scholar 

  13. Sugawara Y, Eisbruch A, Kosuda S, et al. (1999) Evaluation of FDG PET in patients with cervical cancer. J Nucl Med 40(7):1125–1131

    PubMed  CAS  Google Scholar 

  14. Rose PG, Adler LP, Rodriguez M, et al. (1999) Positron emission tomography for evaluating para-aortic nodal metastasis in locally advanced cervical cancer before surgical staging: a surgicopathologic study. J Clin Oncol 17(1):41–45

    PubMed  CAS  Google Scholar 

  15. Reinhardt MJ, Ehritt-Braun C, Vogelgesang D, et al. (2001) Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 218(3):776–782

    PubMed  CAS  Google Scholar 

  16. Narayan K, Hicks RJ, Jobling T, et al. (2001) A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: potential impact on treatment. Int J Gynecol Cancer 11(4):263–271

    Article  PubMed  CAS  Google Scholar 

  17. Sun SS, Chen TC, Yen RF, et al. (2001) Value of whole body 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent cervical cancer. Anticancer Res 21(4B):2957–2961

    PubMed  CAS  Google Scholar 

  18. Yeh LS, Hung YC, Shen YY, et al. (2002) Detecting para-aortic lymph nodal metastasis by positron emission tomography of 18F-fluorodeoxyglucose in advanced cervical cancer with negative magnetic resonance imaging findings. Oncol Rep 9(6):1289–1292

    PubMed  Google Scholar 

  19. Lin WC, Hung YC, Yeh LS, et al. (2003) Usefulness of (18)F-fluorodeoxyglucose positron emission tomography to detect para-aortic lymph nodal metastasis in advanced cervical cancer with negative computed tomography findings. Gynecol Oncol 89(1):73–76

    Article  PubMed  Google Scholar 

  20. Ma SY, See LC, Lai CH, et al. (2003) Delayed (18)F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. J Nucl Med 44(11):1775–1783

    PubMed  Google Scholar 

  21. Havrilesky LJ, Kulasingam SL, Matchar DB, et al. (2005) FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol 97(1):183–191

    Article  PubMed  Google Scholar 

  22. Choi HJ, Roh JW, Seo SS, et al. (2006) Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 106(4):914–922

    Article  PubMed  Google Scholar 

  23. Roh JW, Seo SS, Lee S, et al. (2005) Role of positron emission tomography in pretreatment lymph node staging of uterine cervical cancer: a prospective surgicopathologic correlation study. Eur J Cancer 41(14):2086–2092

    Article  PubMed  Google Scholar 

  24. Wright JD, Dehdashti F, Herzog TJ, et al. (2005) Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-d-glucose-positron emission tomography. Cancer 104(11):2484–2491

    Article  PubMed  Google Scholar 

  25. Wong TZ, Jones EL, Coleman RE (2004) Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-d-glucose for evaluating local and distant disease in patients with cervical cancer. Mol Imaging Biol 6(1):55–62

    Article  PubMed  Google Scholar 

  26. DiSaia PJ, Creasman WT (2002) Clinical gynecologic oncology, 6th edn. Mosby: St Louis

    Google Scholar 

  27. Park DH, Kim KH, Park SY (2000) Diagnosis of recurrent uterine cervical cancer: computed tomography versus positron emission tomography. Korean J Radiol 1(1):51–55

    Article  PubMed  CAS  Google Scholar 

  28. Sun SS, Chen TC, Yen RF, et al. (2001) Value of whole body 18F-fluoro-2-deoxyglucose positron emission tomography in the evaluation of recurrent cervical cancer. Anticancer Res 21(4B):2957–2961

    PubMed  CAS  Google Scholar 

  29. Ryu SY, Kim MH, Choi SC, et al. (2003) Detection of early recurrence with 18F-FDG PET in patients with cervical cancer. J Nucl Med 44(3):347–352

    PubMed  Google Scholar 

  30. Nakamoto Y, Eisbruch A, Achtyes ED, et al. (2002) Prognostic value of positron emission tomography using F-18-fluorodeoxyglucose in patients with cervical cancer undergoing radiotherapy. Gynecol Oncol 84(2):289–295

    Article  PubMed  Google Scholar 

  31. Havrilesky LJ, Wong TZ, Secord AA, et al. (2003) The role of PET scanning in the detection of recurrent cervical cancer. Gynecol Oncol 90(1):186–90

    Article  PubMed  Google Scholar 

  32. Lai CH, Huang KG, See LC, et al. (2004) Restaging of recurrent cervical carcinoma with dual-phase [18F]fluoro-2-deoxy-d-glucose positron emission tomography. Cancer 100(3):544–552

    Article  PubMed  Google Scholar 

  33. Grigsby PW, Siegel BA, Dehdashti F (2001) Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol 19(17):3745–3749

    PubMed  CAS  Google Scholar 

  34. Horowitz NS, Dehdashti F, Herzog TJ, et al. (2004) Prospective evaluation of FDG-PET for detecting pelvic ana paraortic lymph node matastasis in uterine corpus cancer. Gynecol Oncol 95(3):546–551

    Article  PubMed  Google Scholar 

  35. Lentz SS (2002) Endometrial carcinoma diagnosed by positron emission tomography: a case report. Gynecol Oncol 86(2):223–224

    Article  PubMed  Google Scholar 

  36. Nakahara T, Fujii H, Ide M, et al. (2001) F-18 FDG uptake in endometrial cancer. Clin Nucl Med 26(1):82–83

    Article  PubMed  CAS  Google Scholar 

  37. Ak I, Ozalp S, Yalcin OT, Zor E, et al. (2004) Uptake of 2-[18F]fluoro-2-deoxy-d-glucose in uterine leiomyoma: imaging of four patients by coincidence positron emission tomography. Nucl Med Commun 25(9):941–945

    Article  PubMed  Google Scholar 

  38. Torizuka T, Nakamura F, Takekuma M, et al. (2006) FDG PET for the assessment of myometrial infiltration in clinical stage I uterine corpus cancer. Nucl Med Commun 27(6):481–487

    Article  PubMed  Google Scholar 

  39. Horowitz NS, Dehdashti F, Herzog TJ, et al. (2004) Prospective evaluation of FDG-PET for detecting pelvic and para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 95(3):546–551

    Article  PubMed  Google Scholar 

  40. Chao A, Chang TC, Ng KK, et al. (2006) 18F-FDG PET in the management of endometrial cancer. Eur J Nucl Med Mol Imaging 33(1):36–44

    Article  PubMed  Google Scholar 

  41. Belhocine T, De Barsy C, Hustinx R, et al. (2002) Usefulness of (18)F-FDG PET in the post-therapy surveillance of endometrial carcinoma. Eur J Nucl Med Mol Imaging 29(9):1132–1139

    Article  PubMed  CAS  Google Scholar 

  42. Saga T, Higashi T, Ishimori T, et al. (2003) Clinical value of FDG-PET in the follow up of post-operative patients with endometrial cancer. Ann Nucl Med 17(3):197–203

    Article  PubMed  Google Scholar 

  43. Lamoreaux WT, Grigsby PW, Dehdashti F, et al. (2005) FDG-PET evaluation of vaginal carcinoma. Int J Radiat Oncol Biol Phys 62(3):733–737

    PubMed  Google Scholar 

  44. Cohn DE, Dehdashti F, Gibb RK, et al. (2002) Prospective evaluation of positron emission tomography for the detection of groin node metastases from vulvar cancer. Gynecol Oncol 85(1):179–184

    Article  PubMed  Google Scholar 

  45. Lin LL, Dehdashti F, Siegel BA, et al. (2007) PET and PET-CT of tumors of the female genital tract. In: von Schulthess GK (ed) Molecular anatomic imaging. PET-CT and SPECT-CT integrated modality imaging, 2nd edn. Philadelphia: Lippincott Williams & Wilkins, pp 427–442

    Google Scholar 

  46. Kawahara K, Yoshida Y, Kurokawa T, et al. (2004) Evaluation of positron emission tomography with tracer 18-fluorodeoxyglucose in addition to magnetic resonance imaging in the diagnosis of ovarian cancer in selected women after ultrasonography. J Comput Assist Tomogr 28(4):505–516

    Article  PubMed  Google Scholar 

  47. Kumar R, Alavi A (2004) PET imaging in gynecologic malignancies. Radiol Clin N Am 42(6):1155–1167

    Article  PubMed  Google Scholar 

  48. Hubner KF, McDonald TW, Niethammer JG, et al. (1993) Assessment of primary and metastatic ovarian cancer by positron emission tomography (PET) using 2-[18F]deoxyglucose (2-[18F]FDG). Gynecol Oncol 51(2):197–204

    Article  PubMed  CAS  Google Scholar 

  49. Romer W, Avril N, Dose J, et al. (1997) Metabolic characterization of ovarian tumors with positron-emission tomography and F-18 fluorodeoxyglucose. Rofo 166(1):62–68

    PubMed  CAS  Google Scholar 

  50. Schroder W, Zimny M, Rudlowski C, et al. (1999) The role of 18F-fluoro-deoxyglucose positron emission tomography (18F-FDG PET) in diagnosis of ovarian cancer. Int J Gynecol Cancer 9(2):117–122

    Article  PubMed  Google Scholar 

  51. Grab D, Flock F, Stohr I, et al. (2000) Classification of asymptomatic adnexal masses by ultrasound, magnetic resonance imaging, and positron emission tomography. Gynecol Oncol 77(3):454–459

    Article  PubMed  CAS  Google Scholar 

  52. Lieberman G, MacLean AB, Buscombe JR, et al. (2001) The clinical application of a dual head gamma camera with coincidence detection in 20 women with suspected ovarian cancer. BJOG 108(12):1229–1236

    Article  PubMed  CAS  Google Scholar 

  53. Fenchel S, Grab D, Nuessle K, et al. (2002) Asymptomatic adnexal masses: correlation of FDG PET and histopathologic findings. Radiology 223(3):780–788

    Article  PubMed  Google Scholar 

  54. Kawahara K, Yoshida Y, Kurokawa T, et al. (2004) Evaluation of positron emission tomography with tracer 18-fluorodeoxyglucose in addition to magnetic resonance imaging in the diagnosis of ovarian cancer in selected women after ultrasonography. J Comput Assist Tomogr 28(4):505–516

    Article  PubMed  Google Scholar 

  55. Zimny M (2004) Ovarian cancer. In: Oehr P, Biersack HJ, Coleman RE (eds) PET and PET-CT in oncology. Berlin: Springer-Verlag, pp 227–235

    Google Scholar 

  56. Kubik-Huch RA, Dorffler W, von Schulthess GK, et al. (2000) Value of (18F)-FDG positron emission tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur Radiol 10(5):761–767

    Article  PubMed  CAS  Google Scholar 

  57. Yen RF, Sun SS, Shen YY, et al. (2001) Whole body positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Anticancer Res 21(5):3691–3694

    PubMed  CAS  Google Scholar 

  58. Zimny M, Siggelkow W, Schroder W, et al. (2001) 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography in the diagnosis of recurrent ovarian cancer. Gynecol Oncol 83(2):310–315

    Article  PubMed  CAS  Google Scholar 

  59. Cho SM, Ha HK, Byun JY, et al. (2002) Usefulness of FDG PET for assessment of early recurrent epithelial ovarian cancer. AJR Am J Roentgenol 179(2):391–395

    PubMed  Google Scholar 

  60. Chang WC, Hung YC, Kao CH, et al. (2002) Usefulness of whole body positron emission tomography (PET) with 18F-fluoro-2-deoxyglucose (FDG) to detect recurrent ovarian cancer based on asymptomatically elevated serum levels of tumor marker. Neoplasma 49(5):329–333

    PubMed  CAS  Google Scholar 

  61. Torizuka T, Nobezawa S, Kanno T, et al. (2002) Ovarian cancer recurrence: role of whole-body positron emission tomography using 2-[fluorine-18]-fluoro-2-deoxy-D-glucose. Eur J Nucl Med Mol Imaging 29(6):797–803

    Article  PubMed  CAS  Google Scholar 

  62. Bristow RE, del Carmen MG, Pannu HK, et al. (2003) Clinically occult recurrent ovarian cancer: patient selection for secondary cytoreductive surgery using combined PET/CT. Gynecol Oncol 90(3):519–528

    Article  PubMed  Google Scholar 

  63. Pannu HK, Cohade C, Bristow RE, et al. (2004) PET-CT detection of abdominal recurrence of ovarian cancer: radiologic-surgical correlation. Abdom Imaging 29(3):398–403

    Article  PubMed  CAS  Google Scholar 

  64. Nanni C, Rubello D, Farsad M, et al. (2005) (18)F-FDG PET/CT in the evaluation of recurrent ovarian cancer: a prospective study on forty-one patients. Eur J Surg Oncol 31(7):792–797

    Article  PubMed  CAS  Google Scholar 

  65. Takekuma M, Maeda M, Ozawa T, et al. (2005) Positron emission tomography with 18F-fluoro-2-deoxyglucose for the detection of recurrent ovarian cancer. Int J Clin Oncol 10(3):177–181

    Article  PubMed  Google Scholar 

  66. Pannu HK, Bristow RE, Cohade C, et al. (2004) PET-CT in recurrent ovarian cancer: initial observations. Radiographics 24(1):209–223

    Article  PubMed  Google Scholar 

  67. Havrilesky LJ, Kulasingam SL, Matchar DB, et al. (2005) FDG-PET for management of cervical and ovarian cancer. Gynecol Oncol 97(1):183–191

    Article  PubMed  Google Scholar 

  68. Garcia Velloso MJ, Boan Garcia JF, Villar Luque LM, et al. (2003) F-18-FDG positron emission tomography in the diagnosis of ovarian recurrence. Comparison with CT scan and CA 125. Rev Esp Med Nucl 22(4):217–223

    PubMed  CAS  Google Scholar 

  69. Simcock B, Neesham D, Quinn M, et al. (2006) The impact of PET/CT in the management of recurrent ovarian cancer. Gynecol Oncol 103(1):271–276

    Article  PubMed  Google Scholar 

  70. Avril N, Sassen S, Schmalfeldt B, et al. (2005) Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J Clin Oncol 23(30):7445–7453

    Article  PubMed  Google Scholar 

  71. Blake MA, Singh A, Setty BN, et al. (2006) Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics 26(5):1335–1353

    Article  PubMed  Google Scholar 

  72. Cohade C, Osman M, Nakamoto Y, et al. (2003) Initial experience with oral contrast in PET-CT: phantom and clinical studies. J Nucl Med 44(3):412–416

    PubMed  Google Scholar 

  73. Antoch G, Freudenberg LS, Egelhof T, et al. (2002) Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET-CT scans. J Nucl Med 43(10):1339–1342

    PubMed  Google Scholar 

  74. Yau YY, Chan WS, Tam YM, et al. (2005) Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med 46(2):283–291

    PubMed  Google Scholar 

  75. Subhas N, Patel PV, Pannu HK, et al. (2005) Imaging of pelvic malignancies with in-line FDG PET-CT: case examples and common pitfalls of FDG PET. Radiographics 25(4):1031–1043

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria De Gaetano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Gaetano, A.M., Calcagni, M.L., Rufini, V. et al. Imaging of gynecologic malignancies with FDG PET–CT: case examples, physiolocic activity, and pitfalls. Abdom Imaging 34, 696–711 (2009). https://doi.org/10.1007/s00261-008-9457-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-008-9457-8

Keywords

Navigation