Skip to main content
Log in

18F-NaF PET/CT: EANM procedure guidelines for bone imaging

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 13 November 2017

This article has been updated

Abstract

The aim of this guideline is to provide minimum standards for the performance and interpretation of 18F-NaF PET/CT scans. Standard acquisition and interpretation of nuclear imaging modalities will help to provide consistent data acquisition and numeric values between different platforms and institutes and to promote the use of PET/CT modality as an established diagnostic modality in routine clinical practice. This will also improve the value of scientific work and its contribution to evidence-based medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 13 November 2017

    The original version of this article unfortunately contained an error. The name and affiliation of “Frédéric Paycha” needs to be corrected. Given in this article is the correct author name and affiliation.

References

  1. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

    CAS  PubMed  Google Scholar 

  2. Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 51:1826–9. doi: 10.2967/jnumed.110.077933.

  3. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78. doi:10.2967/jnumed.106.037200.

    Article  PubMed  Google Scholar 

  4. Beheshti M, Langsteger W, Fogelman I. Prostate cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39:396–407. doi:10.1053/j.semnuclmed.2009.05.003.

    Article  PubMed  Google Scholar 

  5. Ben-Haim S, Israel O. Breast cancer: role of SPECT and PET in imaging bone metastases. Semin Nucl Med. 2009;39:408–15. doi:10.1053/j.semnuclmed.2009.05.002.

    Article  PubMed  Google Scholar 

  6. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. doi:10.1007/s00259-014-2961-x.

    Article  CAS  PubMed  Google Scholar 

  7. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 51:1813–20. doi: 10.2967/jnumed.110.082263.

  8. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.

    CAS  PubMed  Google Scholar 

  9. Moore AE, Blake GM, Taylor KA, Ruff VA, Rana AE, Wan X, et al. Changes observed in radionuclide bone scans during and after teriparatide treatment for osteoporosis. Eur J Nucl Med Mol Imaging. 39:326-36. doi:10.1007/s00259-011-1974-y.

  10. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.

    Article  CAS  PubMed  Google Scholar 

  11. Messa C, Goodman WG, Hoh CK, Choi Y, Nissenson AR, Salusky IB, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77:949–55.

    CAS  PubMed  Google Scholar 

  12. Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, et al. Assessment of porcine bone metabolism by dynamic. J Nucl Med. 2001;42:1091–100.

    CAS  PubMed  Google Scholar 

  13. Fogelman I. Skeletal uptake of diphosphonate: a review. Eur J Nucl Med. 1980;5:473–6.

    CAS  PubMed  Google Scholar 

  14. Wootton RCD. The single-passage extraction of 18F in rabbit bone. Clin Phys Physiol Meas. 1966;7:333–43.

    Article  Google Scholar 

  15. Weber DA, Greenberg EJ, Dimich A, Kenny PJ, Rothschild EO, Myers WP, et al. Kinetics of radionuclides used for bone studies. J Nucl Med. 1969;10:8–17.

    CAS  PubMed  Google Scholar 

  16. Blake GM, Moore AE, Fogelman I. Quantitative studies of bone using (99m)Tc-methylene diphosphonate skeletal plasma clearance. Semin Nucl Med. 2009;39:369–79. doi:10.1053/j.semnuclmed.2009.05.001.

    Article  PubMed  Google Scholar 

  17. Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Imaging of site specific bone turnover in osteoporosis using positron emission tomography. Curr Osteoporos Rep. 2014;12:475–85. doi:10.1007/s11914-014-0231-2.

    Article  PubMed  Google Scholar 

  18. Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med. 2009;50:1747–50. doi:10.2967/jnumed.109.063263.

    Article  PubMed  Google Scholar 

  19. Centers for Medicare and Medicaid Services. National Coverage Determination (NCD) for Positron Emission Tomography (NaF-18) to Identify Bone Metastasis of Cancer. 2010;220.6.19.

  20. NOPR. National Oncologic PET Registry. 2012.

  21. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Quinn B, et al. Impact of 18F-Fluoride PET on intended management of patients with cancers other than prostate cancer: results from the national oncologic PET registry. J Nucl Med. 2014;55:1054–61. doi:10.2967/jnumed.113.135475.

    Article  CAS  PubMed  Google Scholar 

  22. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Coleman RE. Impact of 18F-fluoride PET in patients with known prostate cancer: initial results from the National Oncologic PET Registry. J Nucl Med. 2014;55:574–81. doi:10.2967/jnumed.113.130005.

    Article  CAS  PubMed  Google Scholar 

  23. Savelli G, Maffioli L, Maccauro M, De Deckere E, Bombardieri E. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45:27–37.

    CAS  PubMed  Google Scholar 

  24. Chan SC, Wang HM, Ng SH, Hsu CL, Lin YJ, Lin CY, et al. Utility of 18F-fluoride PET/CT and 18F-FDG PET/CT in the detection of bony metastases in heightened-risk head and neck cancer patients. J Nucl Med. 2012;53:1730–5. doi:10.2967/jnumed.112.104893.

    Article  PubMed  Google Scholar 

  25. Horger M, Bares R. The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease. Semin Nucl Med. 2006;36:286–94. doi:10.1053/j.semnuclmed.2006.05.001.

    Article  PubMed  Google Scholar 

  26. Even SE. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46:1356–67.

    Google Scholar 

  27. Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80:1588–94. doi:10.1002/(SICI)1097-0142(19971015)80:8+<1588::AID-CNCR9>3.0.CO;2-G.

  28. Han LJ, Au-Yong TK, Tong WC, Chu KS, Szeto LT, Wong CP. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25:635–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kosuda S, Kaji T, Yokoyama H, Yokokawa T, Katayama M, Iriye T, et al. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med. 1996;37:975–8.

    CAS  PubMed  Google Scholar 

  30. Savelli G, Chiti A, Grasselli G, Maccauro M, Rodari M, Bombardieri E. The role of bone SPET study in diagnosis of single vertebral metastases. Anticancer Res. 2000;20:1115–20.

    CAS  PubMed  Google Scholar 

  31. Even-Sapir E, Martin RH, Barnes DC, Pringle CR, Iles SE, Mitchell MJ. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology. 1993;187:193–8.

    Article  CAS  PubMed  Google Scholar 

  32. Gates GF. SPECT bone scanning of the spine. Semin Nucl Med. 1998;28:78–94.

    Article  CAS  PubMed  Google Scholar 

  33. Jacobson AF, Fogelman I. Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med. 1998;25:1219–23.

    Article  CAS  PubMed  Google Scholar 

  34. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol. 2005;184:1266–73.

    Article  PubMed  Google Scholar 

  35. Ota N, Kato K, Iwano S, Ito S, Abe S, Fujita N, et al. Comparison of (1)(8)F-fluoride PET/CT, (1)(8)F-FDG PET/CT and bone scintigraphy (planar and SPECT) in detection of bone metastases of differentiated thyroid cancer: a pilot study. Br J Radiol. 2014;87:20130444. doi:10.1259/bjr.20130444.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Turler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41:59–67. doi:10.1007/s00259-013-2532-6.

    Article  CAS  PubMed  Google Scholar 

  37. Even Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  38. Krger S, Buck A, Mottaghy F, Hasenkamp E, Pauls S, Schumann C, et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2009;36:1807–12.

    Article  Google Scholar 

  39. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  40. Iagaru A, Mittra E, Dick D, Gambhir S. Prospective Evaluation of (99m)Tc MDP Scintigraphy, (18)F NaF PET/CT, and (18)F FDG PET/CT for Detection of Skeletal Metastases. Molecular imaging and biology. 2011.

  41. Yen RF, Chen CY, Cheng MF, Wu YW, Shiau YC, Wu K, et al. The diagnostic and prognostic effectiveness of F-18 sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl Med Commun. 2010;31:637–45. doi:10.1097/MNM.0b013e3283399120.

    CAS  PubMed  Google Scholar 

  42. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, et al. Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med. 2004;45:272–8.

    PubMed  Google Scholar 

  43. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  44. Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42:1800–4.

    CAS  PubMed  Google Scholar 

  45. Hetzel M, Arslandemir C, Konig HH, Buck AK, Nussle K, Glatting G, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18:2206–14. doi:10.1359/jbmr.2003.18.12.2206.

    Article  PubMed  Google Scholar 

  46. Drubach LA. Clinical Utility of 18F NaF PET/CT in Benign and Malignant Disorders. Pet Clin. 2012;7:293–301.

    Article  PubMed  Google Scholar 

  47. Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med. 2009;50:1808–14. doi:10.2967/jnumed.109.062570.

    Article  CAS  PubMed  Google Scholar 

  48. Lim R, Fahey FH, Drubach LA, Connolly LP, Treves ST. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop. 2007;27:277–82. doi:10.1097/BPO.0b013e31803409ba.

    Article  PubMed  Google Scholar 

  49. Tan AL, Tanner SF, Waller ML, Hensor EM, Burns A, Jeavons AP, et al. High-resolution [18F]fluoride positron emission tomography of the distal interphalangeal joint in psoriatic arthritis—a bone-enthesis-nail complex. Rheumatology. 2013;52:898–904. doi:10.1093/rheumatology/kes384.

    Article  PubMed  Google Scholar 

  50. Strobel K, Fischer DR, Tamborrini G, Kyburz D, Stumpe KD, Hesselmann RG, et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37:1760–5. doi:10.1007/s00259-010-1464-7.

    Article  PubMed  Google Scholar 

  51. Kobayashi N, Inaba Y, Tateishi U, Yukizawa Y, Ike H, Inoue T, et al. New application of 18F-fluoride PET for the detection of bone remodeling in early-stage osteoarthritis of the hip. Clin Nucl Med. 2013;38:e379–83. doi:10.1097/RLU.0b013e31828d30c0.

    Article  PubMed  Google Scholar 

  52. Dasa V, Adbel-Nabi H, Anders MJ, Mihalko WM. F-18 fluoride positron emission tomography of the hip for osteonecrosis. Clin Orthop Relat Res. 2008;466:1081–6. doi:10.1007/s11999-008-0219-2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aratake M, Yoshifumi T, Takahashi A, Takeuchi R, Inoue T, Saito T. Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography. Knee Surg Sports Traumatol Arthrosc. 2009;17:53–9. doi:10.1007/s00167-008-0641-8.

    Article  PubMed  Google Scholar 

  54. Raje N, Woo SB, Hande K, Yap JT, Richardson PG, Vallet S, et al. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008;14:2387–95. doi:10.1158/1078-0432.CCR-07-1430.

    Article  CAS  PubMed  Google Scholar 

  55. Wilde F, Steinhoff K, Frerich B, Schulz T, Winter K, Hemprich A, et al. Positron-emission tomography imaging in the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:412–9. doi:10.1016/j.tripleo.2008.09.019.

    Article  PubMed  Google Scholar 

  56. Installe J, Nzeusseu A, Bol A, Depresseux G, Devogelaer JP, Lonneux M. (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med. 2005;46:1650–8.

    CAS  PubMed  Google Scholar 

  57. Fischer DR, Maquieira GJ, Espinosa N, Zanetti M, Hesselmann R, Johayem A, et al. Therapeutic impact of [(18)F]fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skelet Radiol. 2010;39:987–97. doi:10.1007/s00256-010-0875-7.

    Article  Google Scholar 

  58. Sterner T, Pink R, Freudenberg L, Jentzen T, Quitmann H, Bockisch A, et al. The role of [18F]fluoride positron emission tomography in the early detection of aseptic loosening of total knee arthroplasty. Int J Surg. 2007;5:99–104. doi:10.1016/j.ijsu.2006.05.002.

    Article  CAS  PubMed  Google Scholar 

  59. Temmerman OP, Raijmakers PG, Heyligers IC, Comans EF, Lubberink M, Teule GJ, et al. Bone metabolism after total hip revision surgery with impacted grafting: evaluation using H2 15O and [18F]fluoride PET; a pilot study. Mol Imaging Biol. 2008;10:288–93. doi:10.1007/s11307-008-0153-4.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Slipman CW, Patel RK, Vresilovic EJ, Brautigam P, Mathies A, Adam LE, et al. Osseous stress reaction in a rower diagnosed with positron emission tomography (PET): a case report. Pain Phys. 2001;4:336–42.

    CAS  Google Scholar 

  61. Berding G, Burchert W, van den Hoff J, Pytlik C, Neukam FW, Meyer GJ, et al. Evaluation of the incorporation of bone grafts used in maxillofacial surgery with [18F]fluoride ion and dynamic positron emission tomography. Eur J Nucl Med. 1995;22:1133–40.

    Article  CAS  PubMed  Google Scholar 

  62. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med. 2003;44:930–42.

    PubMed  Google Scholar 

  63. Drubach LA, Johnston PR, Newton AW, Perez-Rossello JM, Grant FD, Kleinman PK. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 255:173–81. doi: 10.1148/radiol.09091368.

  64. Ovadia D, Metser U, Lievshitz G, Yaniv M, Wientroub S, Even-Sapir E. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop. 2007;27:90–3. doi:10.1097/01.bpo.0000242438.11682.10.

    Article  PubMed  Google Scholar 

  65. Laverick S, Bounds G, Wong WL. [18F]-fluoride positron emission tomography for imaging condylar hyperplasia. Br J Oral Maxillofac Surg. 2009;47:196–9. doi:10.1016/j.bjoms.2008.08.001.

    Article  CAS  PubMed  Google Scholar 

  66. Donohoe KJ, Henkin RE, Royal HD, Brown ML, Collier BD, O’Mara RE, et al. Procedure guideline for bone scintigraphy: 1.0. Society of Nuclear Medicine. J Nucl Med. 1996;37:1903–6.

    CAS  PubMed  Google Scholar 

  67. Treves ST, Parisi MT, Gelfand MJ. Pediatric radiopharmaceutical doses: new guidelines. Radiology. 261:347–9. doi: 10.1148/radiol.11110449.

  68. Blau M, Ganatra R, Bender MA. 18 F-fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.

    Article  CAS  PubMed  Google Scholar 

  69. Hoegerle S, Juengling F, Otte A, Altehoefer C, Moser EA, Nitzsche EU. Combined FDG and [F-18]fluoride whole-body PET: a feasible two-in-one approach to cancer imaging? Radiology. 1998;209:253–8.

    Article  CAS  PubMed  Google Scholar 

  70. Brunkhorst T, Boerner AR, Bergh S, Otto D, Gratz FW, Knapp WH. Pretherapeutic assessment of tumour metabolism using a dual tracer PET technique. Eur J Nucl Med Mol Imaging. 2002;29:1416. doi:10.1007/s00259-002-0964-5.

    Article  CAS  PubMed  Google Scholar 

  71. Iagaru A, Mittra E, Yaghoubi SS, Dick DW, Quon A, Goris ML, et al. Novel strategy for a cocktail 18F-fluoride and 18F-FDG PET/CT scan for evaluation of malignancy: results of the pilot-phase study. J Nucl Med. 2009;50:501–5. doi:10.2967/jnumed.108.058339.

    Article  PubMed  Google Scholar 

  72. Frost ML, Cook GJ, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res. 2003;18:2215–22. doi:10.1359/jbmr.2003.18.12.2215.

    Article  CAS  Google Scholar 

  73. Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res. 26:1002–11. doi:10.1002/jbmr.305.

  74. Schiepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmans L, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med. 1997;38:1970–6.

    CAS  PubMed  Google Scholar 

  75. Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med. 1999;26:1424–9.

    Article  CAS  PubMed  Google Scholar 

  76. Blake GM, Seddique M, Frost ML, Moore AE, Fogelman I. Quantitative PET imaging using 18F Sodium Fluoride in the assessment of metabolic bone disease and the monitoting of their response to therapy. Pet Clin. 2012;7:275–91.

    Article  PubMed  Google Scholar 

  77. Wootton R, Dore C. The single-passage extraction of 18F in rabbit bone. Clin Phys Physiol Meas. 1986;7:333–43.

    Article  CAS  PubMed  Google Scholar 

  78. Piert M, Zittel TT, Machulla HJ, Becker GA, Jahn M, Maier G, et al. Blood flow measurements with [(15)O]H2O and [18F]fluoride ion PET in porcine vertebrae. J Bone Miner Res. 1998;13:1328–36. doi:10.1359/jbmr.1998.13.8.1328.

    Article  CAS  PubMed  Google Scholar 

  79. Siddique M, Blake GM, Frost ML, Moore AE, Puri T, Marsden PK, et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. Eur J Nucl Med Mol Imaging. 39:337–43. doi:10.1007/s00259-011-1966-y.

  80. Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Radionuclide studies of bone metabolism: do bone uptake and bone plasma clearance provide equivalent measurements of bone turnover? Bone. 49:537–42. doi: 10.1016/j.bone.2011.05.031.

  81. Kawaguchi M, Tateishi U, Shizukuishi K, Suzuki A, Inoue T. 18F-fluoride uptake in bone metastasis: morphologic and metabolic analysis on integrated PET/CT. Ann Nucl Med. 2010;24:241–7. doi:10.1007/s12149-010-0363-0.

    Article  PubMed  Google Scholar 

  82. Vali R, Beheshti M, Waldenberger P, Fitz F, Haim S, Nader M, et al. Assessment of malignant and benighn bone lesions by static F-18 Fluoride PET-CT: additional value of SUV! J Nucl Med. 2008;49:150P.

    Google Scholar 

  83. Cook Jr G, Parker C, Chua S, Johnson B, Aksnes AK, Lewington VJ. 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res. 2011;1:4. doi:10.1186/2191-219X-1-4.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tateishi U, Morita S, Taguri M, Shizukuishi K, Minamimoto R, Kawaguchi M, et al. A meta-analysis of (18)F-Fluoride positron emission tomography for assessment of metastatic bone tumor. Ann Nucl Med. 24:523–31. doi:10.1007/s12149-010-0393-7.

  85. Xia T, Alessio AM, De Man B, Manjeshwar R, Asma E, Kinahan PE. Ultra-low dose CT attenuation correction for PET/CT. Phys Med Biol. 57:309–28. doi:10.1088/0031-9155/57/2/309.

  86. Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74. doi:10.1148/radiol.2511081300.

    Article  PubMed  Google Scholar 

  87. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74. doi:10.1007/s00259-008-0788-z.

    Article  PubMed  Google Scholar 

  88. Radiation dose to patients from radiopharmaceuticals (addendum 3 to ICRP Publication 53) ICRP publication 106 approved by the Commission in October 2007. Ann ICRP 2008;38:1–197.

  89. Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53): ICRP publication 80, approved by the Commission in September 1997. Ann ICRP. 1998;28:1–126.

Download references

Acknowledgments

The authors thank the EANM committees and national delegates for their critical review of the manuscript. Also, we appreciate the grate support of the EANM office in Vienna, especially Katharina Leissing during the development of this Guideline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beheshti.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00259-017-3874-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, M., Mottaghy, F.M., Payche, F. et al. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 42, 1767–1777 (2015). https://doi.org/10.1007/s00259-015-3138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3138-y

Keywords

Navigation