Skip to main content
Log in

Radiation risk and protection of patients in clinical SPECT/CT

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Clinical studies have demonstrated that hybrid single photon emission computed tomography (SPECT)/CT for various diagnostic issues has an added value as compared to SPECT alone. However, the combined acquisition of functional and anatomical images can substantially increase radiation exposure to patients, in particular when using a hybrid system with diagnostic CT capabilities. It is, therefore, essential to carefully balance the diagnostic needs and radiation protection requirements. To this end, the evidence on health effects induced by ionizing radiation is outlined. In addition, the essential concepts for estimating radiation doses and lifetime attributable cancer risks associated with SPECT/CT examinations are presented taking into account both the new recommendations of the International Commission on Radiological Protection (ICRP) as well as the most recent radiation risk models. Representative values of effective dose and lifetime attributable risk are reported for ten frequently used SPECT radiopharmaceuticals and five fully diagnostic partial-body CT examinations. A diagnostic CT scan acquired as part of a combined SPECT/CT examination contributes considerably to, and for some applications even dominates, the total patient exposure. For the common SPECT and CT examinations considered in this study, the lifetime attributable risk of developing a radiation-related cancer is less than 0.27 %/0.37 % for men/women older than 16 years, respectively, and decreases markedly with increasing age at exposure. Since there is no clinical indication for a SPECT/CT examination unless an emission scan has been indicated, the issue on justification comes down to the question of whether it is necessary to additionally acquire a low-dose CT for attenuation correction and anatomical localization of tracer uptake or even a fully diagnostic CT. In any case, SPECT/CT studies have to be optimized, e.g. by adapting dose reduction measures from state-of-the-art CT practice, and exposure levels should not exceed the national diagnostic reference levels for standard situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beyer T, Freudenberg LS, Townsend DW, Czernin J. The future of hybrid imaging−part 1: hybrid imaging technologies and SPECT/CT. Insights Imaging 2011;2:161–9.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Beyer T, Townsend DW, Czernin J, Freudenberg LS. The future of hybrid imaging−part 2: PET/CT. Insights Imaging 2011;2:225–34.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hicks RJ, Hofman MS. Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol 2012;9:712–20.

    Article  CAS  PubMed  Google Scholar 

  4. Wieder H, Freudenberg LS, Czernin J, Navar BN, Isral I, Beyer T. Variations of clinical SPECT/CT operations: an international survey. Nuklearmedizin 2012;51:154–60.

    Article  CAS  PubMed  Google Scholar 

  5. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 2007;168:1–64.

    Article  CAS  PubMed  Google Scholar 

  6. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. Washington: National Academies Press; 2006.

    Google Scholar 

  7. Shah DJ, Sachs RK, Wilson DJ. Radiation-induced cancer: a modern view. Br J Radiol 2012;85:e1166–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Durand DJ, Dixon RL, Morin RL. Utilization strategies for cumulative dose estimates: a review and rational assessment. J Am Coll Radiol 2012;9:480–5.

    Article  PubMed  Google Scholar 

  9. Hendee WR, O’Connor MK. Radiation risks of medical imaging: separating fact from fantasy. Radiology 2012;264:312–21.

    Article  PubMed  Google Scholar 

  10. ICRP. Publication 103. The 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP 2007;37:2–4.

  11. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with scientific annexes. Volume I: effects of ionizing radiation. New York: United Nations; 2006.

  12. ICRP. Publication 105. Radiological protection in medicine. Ann ICRP 2007;37:6.

    Google Scholar 

  13. IAEA. Radiation protection and safety of radiation sources: international basic safety standards. General safety requirements part 3. No. GSR part 3 (interim). Vienna: IAEA; 2011.

  14. Council of the European Union. Council directive 97/43/Euratom of 30 June 1997 on health protection against the dangers of ionizing radiation in relation to medical exposure, and repealing directive 84/466/Euratom. Document 397L0043. Official Journal NO. L 180, 09/07/1997 pp. 0022 – 0027; 1997.

  15. ICRP. Publication 60. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP 1991;21:1−3.

    Google Scholar 

  16. Nosske D, Mattsson S, Johansson L. Dosimetry in nuclear medicine diagnosis and therapy. In: Kaul A, editor. Medical radiological physics. Landold-Börnstein. New series, group VIII, vol 7A. Berlin: Springer; 2012. p. 4–1–4.59.

    Google Scholar 

  17. ICRP. Publication 53. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 1988;18:1–4.

  18. ICRP. Publication 80. Radiation dose to patients from radiopharmaceuticals. Addendum to ICRP Publication 53. Ann ICRP 1998;28:3

  19. ICRP. Publication 106. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. Ann ICRP 2008;38:1–2.

  20. Brix G, Lechel U, Veit R, Truckenbrodt R, Stamm G, Coppenrath EM, et al. Assessment of a theoretical formalism for dose estimation in CT: an anthropomorphic phantom study. Eur Radiol 2004;14:1275–84.

    Article  CAS  PubMed  Google Scholar 

  21. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 1999;9:555–62.

    Article  CAS  PubMed  Google Scholar 

  22. Stamm G, Nagel HD. CT-Expo − ein neuartiges Programm zur Dosisevaluierung in der CT. Fortschr Rontgenstr 2002;174:1570–6.

    Article  CAS  Google Scholar 

  23. Imaging Performance Assessment of CT-Scanners Group. ImPACT CT patient dosimetry calculator v. 1.0.3. http://www.impactscan.org. Accessed 14 Mar 2013.

  24. Bongartz G, Golding SJ, Jurik AG, Leonardi M, van Persijn van Meerten E, Rodríguez R, Schneider K, Calzado A, Geleijns J, Jessen KA, Panzer W, Shrimpton PC, Tosi G. European guidelines for multislice computed tomography. 2004. http://www.msct.eu/CT_Quality_Criteria.htm. Accessed 14 Mar 2013.

  25. Lechel U, Becker C, Langenfeld-Jäger G, Brix G. Dose reduction by automatic exposure control in multidetector computed tomography: comparison between measurement and calculation. Eur Radiol 2009;19:1027–34.

    Article  CAS  PubMed  Google Scholar 

  26. ICRP. Publication 89. International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP 2002;32:3/4

    Google Scholar 

  27. ICRP. Publication 110. Adult reference computational phantoms. Ann ICRP 2009;39:2.

    Google Scholar 

  28. Larkin AM, Serulle Y, Wagner S, Noz ME, Friedman K. Quantifying the increase in radiation exposure associated with SPECT/CT compared to SPECT alone for routine nuclear medicine examinations. Int J Mol Imaging 2011;2011:897202.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sharma P, Sharma S, Ballal S, Bal C, Malhotra A, Kumar R. SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone. Nucl Med Commun 2012;33:926–32.

    Article  PubMed  Google Scholar 

  30. Brix G, Berton M, Nekolla E, Lechel U, Schegerer A, Süselbeck T, Fink C. Cumulative radiation exposure and cancer risk of patients with ischemic heart diseases from diagnostic and therapeutic imaging procedures. Eur J Radiol 2013. doi:10.1016/j.ejrad.2013.07.015.

  31. Statistisches Bundesamt. Statistisches Jahrbuch 2010 für die Bundesrepublik Deutschland. Stuttgart: Metzler-Poeschel; 2011.

    Google Scholar 

  32. Krebs in Deutschland 2005/2006. Häufigkeiten und Trends. 7. Ausgabe. Berlin: Robert Koch-Institut und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V; 2010.

  33. Roach PJ, Gradinscak DJ, Schembri GP, Bailey EA, Willowson KP, Bailey DL. SPECT/CT in V/Q scanning. Semin Nucl Med 2010;40:455–66.

    Article  PubMed  Google Scholar 

  34. Buck AK, Nekolla S, Zielger S, Beer A, Krause BJ, Herrmann K, et al. SPECT/CT. J Nucl Med 2008;49:1305–19.

    Article  PubMed  Google Scholar 

  35. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005;46:608–13.

    CAS  PubMed  Google Scholar 

  36. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, EANM Dosimetry and Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging 2007;34:796–8.

    Article  CAS  PubMed  Google Scholar 

  37. Nagel HD, Galanski M, Hidajat N, Maier W, Schmidt T. Radiation exposure in computed tomography–fundamentals, influencing parameters, dose assessment, optimisation, scanner data, terminology. 4th ed. Hamburg: CTB Publications; 2002.

    Google Scholar 

  38. Catalano C, Francone M, Ascarelli A, Mangia M, Iacucci I, Passariello R. Optimizing radiation dose and image quality. Eur Radiol 2007;17 Suppl 6:F26–32.

    Article  PubMed  Google Scholar 

  39. Zacharias C, Alessio AM, Otto RK, Iyer RS, Philips GS, Swanson JO, et al. Pediatric CT: strategies to lower radiation dose. AJR Am J Roentgenol 2013;200:950–6.

    Article  PubMed  Google Scholar 

  40. Kalra MK, Singh S, Thrall JH, Mahesh M. Pointers for optimizing radiation dose in abdominal CT protocols. J Am Coll Radiol 2011;8:731–4.

    Article  PubMed  Google Scholar 

  41. Slomka PJ, Dey D, Duvall WL, Henzlova MJ, Berman DS, Germano G. Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. Curr Cardiol Rep 2012;14:208–16.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zoccarato O. Innovative reconstruction algorithms in cardiac SPECT scintigraphy. Q J Nucl Med Mol Imaging 2012;56:230–46.

    CAS  PubMed  Google Scholar 

  43. Jin M, Niu X, Qi W, Yang Y, Dey J, King MA, et al. 4D reconstruction for low-dose cardiac gated SPECT. Med Phys 2013;40:022501.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Gudjónsdóttir J, Ween B, Olsen DR. Optimal use of AEC in CT: a literature review. Radiol Technol 2010;81:309–17.

    PubMed  Google Scholar 

  45. Deak PD, Langner O, Lell M, Kalender WA. Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 2009;252:140–7.

    Article  PubMed  Google Scholar 

  46. Leander P, Söderberg M, Fält T, Gunnarsson M, Albertsson I. Post-processing image filtration enabling dose reduction in standard abdominal CT. Radiat Prot Dosimetry 2010;139:180–5.

    Article  PubMed  Google Scholar 

  47. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med 2012;28:94–108.

    Article  PubMed  Google Scholar 

  48. European Communities. Guidelines on diagnostic reference levels (DRLs) for medical exposures. Radiation protection 109; 1991.

Download references

Acknowledgment

The support of U. Lechel and A. Schegerer is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Brix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brix, G., Nekolla, E.A., Borowski, M. et al. Radiation risk and protection of patients in clinical SPECT/CT. Eur J Nucl Med Mol Imaging 41 (Suppl 1), 125–136 (2014). https://doi.org/10.1007/s00259-013-2543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2543-3

Keywords

Navigation