Skip to main content

Advertisement

Log in

Pathology-based validation of FDG PET segmentation tools for volume assessment of lymph node metastases from head and neck cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

FDG PET is increasingly incorporated into radiation treatment planning of head and neck cancer. However, there are only limited data on the accuracy of radiotherapy target volume delineation by FDG PET. The purpose of this study was to validate FDG PET segmentation tools for volume assessment of lymph node metastases from head and neck cancer against the pathological method as the standard.

Methods

Twelve patients with head and neck cancer and 28 metastatic lymph nodes eligible for therapeutic neck dissection underwent preoperative FDG PET/CT. The metastatic lymph nodes were delineated on CT (NodeCT) and ten PET segmentation tools were used to assess FDG PET-based nodal volumes: interpreting FDG PET visually (PETVIS), applying an isocontour at a standardized uptake value (SUV) of 2.5 (PETSUV), two segmentation tools with a fixed threshold of 40 % and 50 %, and two adaptive threshold based methods. The latter four tools were applied with the primary tumour as reference and also with the lymph node itself as reference. Nodal volumes were compared with the true volume as determined by pathological examination.

Results

Both NodeCT and PETVIS showed good correlations with the pathological volume. PET segmentation tools using the metastatic node as reference all performed well but not better than PETVIS. The tools using the primary tumour as reference correlated poorly with pathology. PETSUV was unsatisfactory in 35 % of the patients due to merging of the contours of adjacent nodes.

Conclusion

FDG PET accurately estimates metastatic lymph node volume, but beyond the detection of lymph node metastases (staging), it has no added value over CT alone for the delineation of routine radiotherapy target volumes. If FDG PET is used in radiotherapy planning, treatment adaptation or response assessment, we recommend an automated segmentation method for purposes of reproducibility and interinstitutional comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schinagl DA, Kaanders JH, Oyen WJ. From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imaging. 2006;6:S107–16.

    Article  PubMed  CAS  Google Scholar 

  2. Troost EG, Schinagl DA, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJ, et al. Innovations in radiotherapy planning of head and neck cancers: role of PET. J Nucl Med. 2010;51:66–76.

    Article  PubMed  Google Scholar 

  3. Heron DE, Andrade RS, Flickinger J, Johnson J, Agarwala SS, Wu A, et al. Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys. 2004;60:1419–24.

    Article  PubMed  Google Scholar 

  4. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46:1342–8.

    PubMed  Google Scholar 

  5. Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys. 2002;53:1051–7.

    Article  PubMed  Google Scholar 

  6. Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion. Int J Radiat Oncol Biol Phys. 2006;65:726–32.

    Article  PubMed  Google Scholar 

  7. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2004;59:78–86.

    Article  PubMed  Google Scholar 

  8. Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys. 2007;67:720–6.

    Article  PubMed  Google Scholar 

  9. Paulino AC, Johnstone PA. FDG-PET in radiotherapy treatment planning: Pandora’s box? Int J Radiat Oncol Biol Phys. 2004;59:4–5.

    Article  PubMed  Google Scholar 

  10. Brianzoni E, Rossi G, Ancidei S, Berbellini A, Capoccetti F, Cidda C, et al. Radiotherapy planning: PET/CT scanner performances in the definition of gross tumor volume and clinical target volume. Eur J Nucl Med Mol Imaging. 2005;32:1392–9.

    Article  PubMed  Google Scholar 

  11. Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computed tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys. 2003;57:853–63.

    Article  PubMed  Google Scholar 

  12. Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys. 2002;52:339–50.

    Article  PubMed  Google Scholar 

  13. Miller TR, Grigsby PW. Measurement of tumor volume by PET to evaluate prognosis in patients with advanced cervical cancer treated by radiation therapy. Int J Radiat Oncol Biol Phys. 2002;53:353–9.

    Article  PubMed  Google Scholar 

  14. Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2005;61:1385–92.

    Article  PubMed  Google Scholar 

  15. Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Int J Radiat Oncol Biol Phys. 2003;69:247–50.

    Google Scholar 

  16. Van Dalen JA, Hoffmann AL, Dicken V, Vogel WV, Wiering B, Ruers TJ, et al. A novel iterative method for lesion detection and volumetric quantification with FDG-PET. Nucl Med Commun. 2007;28:485–93.

    Article  PubMed  Google Scholar 

  17. Schinagl DA, Vogel WV, Hoffmann AL, van Dalen JA, Oyen WJ, Kaanders JH. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys. 2007;69:1282–9.

    Article  PubMed  CAS  Google Scholar 

  18. Schinagl DA, Hoffmann AL, Vogel WV, van Dalen JA, Verstappen SM, Oyen WJ, et al. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer? Radiother Oncol. 2009;91:95–100.

    Article  PubMed  Google Scholar 

  19. Caldas-Magalhaes J, Kasperts N, Kooij N, van den Berg CA, Terhaard CH, Raaijmakers CP, et al. Validation of imaging with pathology in laryngeal cancer: accuracy of the registration methodology. Int J Radiat Oncol Biol Phys. 2012;82:e289–98.

    Article  PubMed  Google Scholar 

  20. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology. 2004;233:93–100.

    Article  PubMed  Google Scholar 

  21. Hatt M, le Cheze RC, Descourt P, Dekker A, De RD, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77:301–8.

    Article  PubMed  Google Scholar 

  22. Geets X, Lee JA, Bol A, Lonneux M, Gregoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging. 2007;34:1427–38.

    Article  PubMed  Google Scholar 

  23. Zaidi H, Abdoli M, Fuentes CL, El Naqa I. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2012;39:881–91.

    Article  PubMed  Google Scholar 

  24. Vogel WV, Wensing BM, van Dalen JA, Krabbe PF, van den Hoogen FJ, Oyen WJ. Optimised PET reconstruction of the head and neck area: improved diagnostic accuracy. Eur J Nucl Med Mol Imaging. 2005;32:1276–82.

    Article  PubMed  Google Scholar 

  25. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.

    Article  PubMed  Google Scholar 

  26. Baek CH, Chung MK, Son YI, Choi JY, Kim HJ, Yim YJ, et al. Tumor volume assessment by 18F-FDG PET/CT in patients with oral cavity cancer with dental artifacts on CT or MR images. J Nucl Med. 2008;49:1422–8.

    Article  PubMed  Google Scholar 

  27. Burri RJ, Rangaswamy B, Kostakoglu L, Hoch B, Genden EM, Som PM, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys. 2008;71:682–8.

    Article  PubMed  Google Scholar 

  28. Seitz O, Chambron-Pinho N, Middendorp M, Sader R, Mack M, Vogl TJ, et al. 18F-fluorodeoxyglucose-PET/CT to evaluate tumor, nodal disease, and gross tumor volume of oropharyngeal and oral cavity cancer: comparison with MR imaging and validation with surgical specimen. Neuroradiology. 2009;51:677–86.

    Article  PubMed  Google Scholar 

  29. Arens AI, Troost EG, Schinagl D, Kaanders JH, Oyen WJ. FDG-PET/CT in radiation treatment planning of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging. 2011;55:521–8.

    PubMed  CAS  Google Scholar 

  30. Schinagl DA, Span PN, Oyen WJ, Kaanders JH. Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study. Eur J Nucl Med Mol Imaging. 2011;38:1449–58.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Arie Maat for helpful collaboration in conducting the pathology procedure.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic A. X. Schinagl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schinagl, D.A.X., Span, P.N., van den Hoogen, F.J.A. et al. Pathology-based validation of FDG PET segmentation tools for volume assessment of lymph node metastases from head and neck cancer. Eur J Nucl Med Mol Imaging 40, 1828–1835 (2013). https://doi.org/10.1007/s00259-013-2513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2513-9

Keywords

Navigation