Skip to main content

Advertisement

Log in

Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The technological advances in imaging and production of radiopharmaceuticals are driving an innovative way of evaluating the targets for antineoplastic therapies. Besides the use of imaging to better delineate the volume of external beam radiation therapy in oncology, modern imaging techniques are able to identify targets for highly specific medical therapies, using chemotherapeutic drugs and antiangiogenesis molecules. Moreover, radionuclide imaging is able to select targets for radionuclide therapy and to give the way to in vivo dose calculation to target tissues and to critical organs. This contribution reports the main studies published on matched pairs dosimetry with 124I/131I- and 86Y/90Y-labelled radiopharmaceuticals, with an emphasis on metaiodobenzylguanidine (MIBG) and monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJG, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 2007;34:772–86.

    PubMed  CAS  Google Scholar 

  2. Chester KA, Hawkins RE. Clinical issues in antibody design. Trends Biotechnol 1995;13:294–300.

    PubMed  CAS  Google Scholar 

  3. Hertz S, Roberts A. Application of radioactive iodine in therapy of Graves’ disease. J Clin Invest 1942;21:624.

    Google Scholar 

  4. Prinzmetal M, Agress CM, Bergman HC, Simkin B. The use of radioactive iodine in the treatment of Graves’ disease. Calif Med 1949;70(4):235–9.

    PubMed  CAS  Google Scholar 

  5. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495–7.

    PubMed  Google Scholar 

  6. Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med 2008;38:308–20.

    PubMed  Google Scholar 

  7. Flux G, Bardies M, Monsieurs M, Savolainen S, Strand SE, Lassmann M, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006;16:47–59.

    PubMed  Google Scholar 

  8. Wieland DM, Wu J, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 1980;21:349–53.

    PubMed  CAS  Google Scholar 

  9. Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med 1994;21:545–59.

    PubMed  CAS  Google Scholar 

  10. Brodeur GM et al. Neuroblastoma. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia: J. B. Lippincott; 1997. p. 29–761.

    Google Scholar 

  11. Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med 2007;37(5):316–31.

    PubMed  Google Scholar 

  12. LaBrosse EH, Comoy E, Bohuon C, Zucker JM, Schweisguth O. Catecholamine metabolism in neuroblastoma. J Natl Cancer Inst 1976;57(3):633–8.

    PubMed  CAS  Google Scholar 

  13. Vaidyanathan G. Meta-iodobenzylguanidine and analogues: chemistry and biology. Q J Nucl Med Mol Imaging 2008;52:351–68.

    PubMed  CAS  Google Scholar 

  14. Leung A, Shapiro B, Hattner R, Kim E, de Kraker J, Ghazzar N, et al. Specificity of radioiodinated MIBG for neural crest tumors in childhood. J Nucl Med 1997;38:1352–7.

    PubMed  CAS  Google Scholar 

  15. Hattner RS, Huberty JP, Engelstad BL, Gooding CA, Ablin AR. Localization of m-iodo(131I)benzylguanidine in neuroblastoma. AJR Am J Roentgenol 1984;143:373–4.

    PubMed  CAS  Google Scholar 

  16. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging 2008;35:1039–47.

    PubMed  CAS  Google Scholar 

  17. Garaventa A, Bellagamba O, Lo Piccolo MS, Milanaccio C, Lanino E, Bertolazzi L, et al. 131I-metaiodobenzylguanidine (131I-MIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients. Br J Cancer 1999;81:1378–84.

    PubMed  CAS  Google Scholar 

  18. Klingebiel T, Berthold F, Treuner J, Schwabe D, Fischer M, Feine U, et al. Metaiodobenzylguanidine (mIBG) in treatment of 47 patients with neuroblastoma: results of the German Neuroblastoma Trial. Med Pediatr Oncol 1991;19:84–8.

    PubMed  CAS  Google Scholar 

  19. Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. J Clin Oncol 1992;10:1889–96.

    PubMed  CAS  Google Scholar 

  20. Troncone L, Rufini V, Montemaggi P, Danza FM, Lasorella A, Mastrangelo R. The diagnostic and therapeutic utility of radioiodinated metaiodobenzylguanidine (MIBG). 5 years of experience. Eur J Nucl Med 1990;16:325–35.

    PubMed  CAS  Google Scholar 

  21. DuBois SG, Matthay KK. Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol 2008;35 Suppl 1:S35–48.

    PubMed  CAS  Google Scholar 

  22. Grünwald F, Ezziddin S. 131I-Metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med 2010;40:153–63.

    PubMed  Google Scholar 

  23. Safford SD, Coleman RE, Gockerman JP, Moore J, Feldman J, Onaitis MW, et al. Iodine-131 metaiodobenzylguanidine treatment for metastatic carcinoid. Results in 98 patients. Cancer 2004;101:1987–93.

    PubMed  CAS  Google Scholar 

  24. Gedik G, Hoefnagel C, Bais E, Olmos RA. 131I-MIBG therapy in metastatic phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2008;35:725–33.

    PubMed  CAS  Google Scholar 

  25. Loh KC, Fitzgerald PA, Matthay KK, Yeo PP, Price DC. The treatment of malignant pheochromocytoma with iodine-131 metaiodobenzylguanidine (131I-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Invest 1997;20:648–58.

    PubMed  CAS  Google Scholar 

  26. Bomanji JB, Wong W, Gaze MN, Cassoni A, Waddington W, Solano J, et al. Treatment of neuroendocrine tumours in adults with 131I-MIBG therapy. Clin Oncol (R Coll Radiol) 2003;15:193–8.

    CAS  Google Scholar 

  27. Safford SD, Coleman RE, Gockerman JP, Moore J, Feldman JM, Leight GS, et al. Iodine -131 metaiodobenzylguanidine is an effective treatment for malignant pheochromocytoma and paraganglioma. Surgery 2003;134:956–62.

    PubMed  Google Scholar 

  28. Hoefnagel CA. Metaiodobenzylguanidine and somatostatin in oncology: role in the management of neural crest tumours. Eur J Nucl Med 1994;21:561–81.

    PubMed  CAS  Google Scholar 

  29. Castellani MR, Seregni E, Maccauro M, Chiesa C, Aliberti G, Orunescu E, et al. MIBG for diagnosis and therapy of medullary thyroid carcinoma: is there still a role? Q J Nucl Med Mol Imaging 2008;52:430–40.

    PubMed  CAS  Google Scholar 

  30. Buckley SE, Chittenden SJ, Saran F, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med 2009;50:1518–24.

    PubMed  CAS  Google Scholar 

  31. Monsieurs MA, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for 131I-MIBG therapy for neuroendocrine tumours based on 123I-MIBG scans. Eur J Nucl Med Mol Imaging 2002;29:1581–7.

    PubMed  CAS  Google Scholar 

  32. http://www.nndc.bnl.gov/nudat2/

  33. Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys 2010;37(9):4861–6.

    PubMed  Google Scholar 

  34. Qaim SM, Hohn A, Bastian TH, El-Azoney KM, Blessing G, Spellerberg S, et al. Some optimisation studies relevant to the production of high-purity 124I and 120gI at a small-sized cyclotron. Appl Radiat Isot 2003;58:69–78.

    PubMed  CAS  Google Scholar 

  35. Lewis JS, Welch MJ, Tang L. Workshop on the production, application and clinical translation of “non-standard” PET nuclides: a meeting report. Q J Nucl Med Mol Imaging 2008;52:101–6.

    PubMed  CAS  Google Scholar 

  36. Warr N, Drissi S, Garrett PE, Jolie J, Kern J, Lehmann H, et al. Study of 124Te by the 122Sn(α,2nγ) reaction and by the decay of 124I. Nucl Phys A 1998;636:379–418.

    Google Scholar 

  37. Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM. PET imaging problems with the non-standard positron emitters yttrium-86 and iodine-124. Q J Nucl Med Mol Imaging 2007;52:159–65.

    PubMed  Google Scholar 

  38. Mariani G, Bruselli L, Duatti A. Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging 2008;35:1560–5.

    PubMed  Google Scholar 

  39. Pentlow KS, Graham MC, Lambrecht RM, Cheung NKV, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18(3):357–66.

    PubMed  CAS  Google Scholar 

  40. Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol 1992;65:787–91.

    PubMed  CAS  Google Scholar 

  41. Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med 2007;48:827–36.

    PubMed  CAS  Google Scholar 

  42. Coleman RE, Stubbs JB, Barrett JA, de la Guardia M, Lafrance N, Babich JW. Radiation dosimetry, pharmacokinetics, and safety of ultratrace Iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer Biother Radiopharm 2009;24:469–75.

    PubMed  CAS  Google Scholar 

  43. Becker DV, McConahey WM, Dobyns BM, et al. The results of radioiodine treatment of hyperthyroidism. In: Fellinger K, Höfer R, editors. Further advances in thyroid research. Vienna: Verlag der Wiener Medizinischen Akademie; 1971. p. 603–9.

    Google Scholar 

  44. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45:1366–72.

    PubMed  CAS  Google Scholar 

  45. Bast RC, Zalutsky MR, Kreitman RJ, et al. Monoclonal serotherapy. In: Bast RC, Kufe D, Pollock R, editors. Cancer medicine. 5th ed. Hamilton: BC Decker; 2000. p. 860–75.

  46. Larson SM, Pentlow KS, Volkow ND, Wolf AP, Finn RD, Lambrecht RM, et al. PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 1992;33:2020–3.

    PubMed  CAS  Google Scholar 

  47. Welt S, Divgi CR, Kemeny N, Finn RD, Scott AM, Graham M, et al. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 1994;12:1561–71.

    PubMed  CAS  Google Scholar 

  48. Meredith RF, Khazaeli MB, Plott WE, et al. Comparison of two mouse/human chimeric antibodies in patients with metastatic colon cancer. Antibod Immunoconjug Radiopharm 1992;5:75–80.

    Google Scholar 

  49. Tempero M, Leichner P, Baranowska-Kortylewicz J, Harrison K, Augustine S, Schlom J, et al. High-dose therapy with 90yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin Cancer Res 2000;6:3095–102.

    PubMed  CAS  Google Scholar 

  50. Knox SJ, Goris ML, Tempero M, Wieden PL, Gentner L, Breitz H, et al. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 2000;6:406–14.

    PubMed  CAS  Google Scholar 

  51. Behr TM, Salib AL, Liersch T, Béhé M, Angerstein C, Blumenthal RD, et al. Radioimmunotherapy of small volume disease of colorectal cancer metastatic to the liver: preclinical evaluation in comparison to standard chemotherapy and initial results of a phase I clinical study. Clin Cancer Res 1999;5:3232s–42s.

    PubMed  CAS  Google Scholar 

  52. Behr TM, Sharkey RM, Juweid ME, Dunn RM, Vagg RC, Ying Z, et al. Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J Nucl Med 1997;38:858–70.

    PubMed  CAS  Google Scholar 

  53. Ebeling FG, Stieber P, Untch M, Nagel D, Konecny GE, Schmitt UM, et al. Serum CEA and CA 15-3 as prognostic factors in primary breast cancer. Br J Cancer 2002;86:1217–22.

    PubMed  CAS  Google Scholar 

  54. Taylor-Papadimitriou J, Peterson JA, Arklie J, Burchell J, Ceriani RL, Bodmer WF. Monoclonal antibodies to epithelium-specific components of the human milk fat globule membrane: production and reaction with cells in culture. Int J Cancer 1981;28:17–21.

    PubMed  CAS  Google Scholar 

  55. Gold P, Freedman SO. Demonstration of tumour-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 1965;121:439–62.

    PubMed  CAS  Google Scholar 

  56. Marken JS, Schieven GL, Hellström I, Hellström KE, Aruffo A. Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci U S A 1992;89:3503–7.

    PubMed  CAS  Google Scholar 

  57. Cagnoni PJ, Cook B, Johnson TK, et al. Phase I study of high-dose radioimmunotherapy with 90Y-hu- BrE-3 followed by autologous hematopoietic stem cell support (AHSCS) in patients with refractory metastatic breast cancer [abstract]. Cancer Biother Radiopharm 2000;15:405.

    Google Scholar 

  58. Nicholson S, Gooden CS, Hird V, Maraveyas A, Mason P, Lambert HE, et al. Radioimmunotherapy after chemotherapy compared to chemotherapy alone in the treatment of advanced ovarian cancer: a matched analysis. Oncol Rep 1998;5:223–6.

    PubMed  CAS  Google Scholar 

  59. Epenetos AA, Hird V, Lambert H, et al. The long-term survival of patients with ovarian cancer treated with radioimmunotherapy [abstract]. Cancer Biother Radiopharm 2000;15:111.

    Google Scholar 

  60. DeNardo SJ, Richman CM, Goldstein DS, Shen S, Salako Q, Kukis DL, et al. Yttrium 90/indium-111-DOTA-peptide-chimeric L6: pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer. Anticancer Res 1997;17:1735–44.

    PubMed  CAS  Google Scholar 

  61. DeNardo SJ, Kukis DL, Kroger LA, O’Donnell RT, Lamborn KR, Miers LA, et al. Synergy of taxol and radioimmunotherapy with yttrium-90-labeled chimeric L6 antibody: efficacy and toxicity in breast cancer xenografts. Proc Natl Acad Sci U S A 1997;94:4000–4.

    PubMed  CAS  Google Scholar 

  62. Burke PA, DeNardo SJ, Miers LA, Kukis DL, DeNardo GL. Combined modality radioimmunotherapy. Promise and peril. Cancer 2002;94:1320–31.

    PubMed  CAS  Google Scholar 

  63. Divgi CR, Bander NH, Scott AM, O’Donoghue JA, Sgouros G, Welt S, et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin Cancer Res 1998;4:2729–39.

    PubMed  CAS  Google Scholar 

  64. O’Donnell RT, DeNardo SJ, Miers LA, Lamborn KR, Kukis DL, DeNardo GL, et al. Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate 2002;50:27–37.

    PubMed  Google Scholar 

  65. Adams GP, McCartney JE, Tai M-S, Oppermann H, Huston JS, Stafford WF, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res 1993;53:4026–34.

    PubMed  CAS  Google Scholar 

  66. http://www.micad.nih.gov

  67. Fortin MA, Salnikov AV, Nestor M, Heldin NE, Rubin K, Lundqvist H. Immuno-PET of undifferentiated thyroid carcinoma with radioiodine-labelled antibody cMAb U36: application to antibody tumour uptake studies. Eur J Nucl Med Mol Imaging 2007;34:1376–87.

    PubMed  CAS  Google Scholar 

  68. Verel I, Visser GWM, Vosjan MJWD, Finn R, Boellaard R, van Dongen GAMS. High-quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy. Eur J Nucl Med Mol Imaging 2004;31:1645–52.

    PubMed  CAS  Google Scholar 

  69. Welt S, Divgi CR, Real FX, Yeh SD, Garin-Chesa P, Finstad CL, et al. Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33. J Clin Oncol 1990;8:1894–906.

    PubMed  CAS  Google Scholar 

  70. Yazaki PJ, Wu AM, Tsai SW, Williams LE, Ikler DN, Wong JY, et al. Tumor targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and T84.66 minibody: comparison to radioiodinated fragments. Bioconjug Chem 2001;12:220–8.

    PubMed  CAS  Google Scholar 

  71. Leyton JV, Olafsen T, Lepin EJ, Hahm S, Bauer KB, Reiter RE, et al. Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors. Clin Cancer Res 2008;14:7488–96.

    PubMed  CAS  Google Scholar 

  72. Leyton JV, Olafsen T, Sherman MA, Bauer KB, Aghajanian P, Reiter RE, et al. Engineered humanized diabodies for microPET imaging of prostate stem cell antigen-expressing tumors. Protein Eng Des Sel 2009;22:209–16.

    PubMed  CAS  Google Scholar 

  73. Leyton JV, Olafsen T, Lepin EJ, Hahm S, Bauer KB, Reiter RE, et al. Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors. Clin Cancer Res 2008;14:7488–96.

    PubMed  CAS  Google Scholar 

  74. Olafsen T, Betting D, Kenanova VE, Salazar FB, Clarke P, Said J, et al. Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas. J Nucl Med 2009;50:1500–8.

    PubMed  CAS  Google Scholar 

  75. Kaminski MS, Zasadny KR, Francis IR, Milik AW, Ross CW, Moon SD, et al. Radiommunotherapy of B-cell lymphoma with [131I]anti-B I (anti-CD20) antibody. N Engl J Med 1993;329:459–65.

    PubMed  CAS  Google Scholar 

  76. Wu AM, Olafsen T. Antibodies for molecular imaging of cancer. Cancer J 2008;14:191–7.

    PubMed  CAS  Google Scholar 

  77. Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gönen M, Ruan S, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 2007;8:304–10.

    PubMed  CAS  Google Scholar 

  78. Brouwers AH, Buijs WCAM, Mulders PFA, de Mulder PHM, van den Broek WJM, Mala C, et al. Radioimmunotherapy with [131I]cG250 in patients with metastasized renal cell cancer: dosimetric analysis and immunologic response. Clin Cancer Res 2005;11:7178s–86s.

    PubMed  CAS  Google Scholar 

  79. Hasselbalch B, Lassen U, Poulsen HS, Stockhausen MT. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling. Cancer Invest 2010;28:775–87.

    PubMed  CAS  Google Scholar 

  80. Zou P, Povoski SP, Hall NC, Carlton MM, Hinkle GH, Xu RX, et al. 124I-HuCC49deltaCH2 for TAG-72 antigen-directed positron emission tomography (PET) imaging of LS174T colon adenocarcinoma tumor implants in xenograft mice: preliminary results. World J Surg Oncol 2010;8:65.

    PubMed  Google Scholar 

  81. Buchsbaum DJ, Rogers BE, Khazaeli MB, Mayo MS, Milenic DE, Kashmiri SV, et al. Targeting strategies for cancer radiotherapy. Clin Cancer Res 1999;5 Suppl 10:3048s–55s.

    PubMed  CAS  Google Scholar 

  82. Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471–8.

    PubMed  CAS  Google Scholar 

  83. Alexis F, Basto P, Levy-Nissenbaum E, Radovic-Moreno AF, Zhang L, Pridgen E, et al. HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 2008;3(12):1839–43.

    PubMed  CAS  Google Scholar 

  84. Tolmachev V, Mume E, Sjöberg S, Frejd FY, Orlova A. Influence of valency and labelling chemistry on in vivo targeting using radioiodinated HER2-binding Affibody molecules. Eur J Nucl Med Mol Imaging 2009;36(4):692–701.

    PubMed  Google Scholar 

  85. Bakir MA, Eccles SA, Babicht JW, Aftab N, Styles JM, Dean CJ, et al. c-erbB2 protein overexpression in breast cancer as a target for PET using iodine-124-labeled monoclonal antibodies. J NucI Med 1992;33:2154–60.

    CAS  Google Scholar 

  86. Dijkers EC, de Vries EG, Kosterink JG, Brouwers AH, Lub-de Hooge MN. Immunoscintigraphy as potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharm Des 2008;14(31):3348–62.

    PubMed  CAS  Google Scholar 

  87. Rubin SC, Kairemo KJ, Brownell AL, Daghighian F, Federici MG, Pentlow KS, et al. High-resolution positron emission tomography of human ovarian cancer in nude rats using 124I-labeled monoclonal antibodies. Gynecol Oncol 1993;48(1):61–7.

    PubMed  CAS  Google Scholar 

  88. Nayak TK, Garmestani K, Baidoo KE, Milenic DE, Brechbiel MW. Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J Nucl Med 2010;51:942–50.

    PubMed  CAS  Google Scholar 

  89. Nayak TK, Regino CAS, Wong KJ, Milenic DE, Garmestani K, Baidoo KE, et al. PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A″-DTPA-cetuximab. Eur J Nucl Med Mol Imaging 2010;37:1368–76.

    PubMed  CAS  Google Scholar 

  90. Palm S, Enmon RM, Matei C, Kolbert KS, Xu S, Zanzonico PB, et al. Pharmacokinetics and biodistribution of (86)Y-trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative microPET and MRI. J Nucl Med 2003;44:1148–55.

    PubMed  CAS  Google Scholar 

  91. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 2002;94:1484–93.

    PubMed  CAS  Google Scholar 

  92. Kairemo KJA. Positron emission tomography of monoclonal antibodies. Acta Oncol 1993;32:825–30.

    PubMed  CAS  Google Scholar 

  93. Snook DE, Rowlinson-Busza G, Sharma HL, Epenetos AA. Preparation and in vivo study of 124I-labelled monoclonal antibody H17E2 in a human tumour xenograft model. A prelude to positron emission tomography (PET). Br J Cancer Suppl 1990;10:89–91.

    PubMed  CAS  Google Scholar 

  94. Westera G, Reist HW, Buchegger F, Heusser CH, Hardman N, Pfeiffer A, et al. Radioimmuno positron emission tomography with monoclonal antibodies: a new approach to quantifying in vivo tumour concentration and biodistribution for radioimmunotherapy. Nucl Med Commun 1991;12:429–37.

    PubMed  CAS  Google Scholar 

  95. Verel I, Visser GWM, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46:164S–71S.

    PubMed  Google Scholar 

  96. Lee FT, Hall C, Rigopoulos A, Zweit J, Pathmaraj K, O’Keefe GJ, et al. Immuno-PET of human colon xenograft-bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med 2001;42:764–9.

    PubMed  CAS  Google Scholar 

  97. Sunderesan G, Yazaki P, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44:1962–9.

    Google Scholar 

  98. Wilson CB, Snook DE, Dhokia B, Taylor CV, Watson IA, Lammertsma AA, et al. Quantitative measurement of monoclonal antibody distribution and blood flow using positron emission tomography and 124iodine in patients with breast cancer. Int J Cancer 1991;47:344–7.

    PubMed  CAS  Google Scholar 

  99. Ray G, Baidoo K, Wong K, Williams M, Garmestani K, Brechbiel MW, et al. Preclinical evaluation of a monoclonal antibody targeting the epidermal growth factor receptor as a radioimmunodiagnostic and radioimmunotherapeutic agent. Br J Pharmacol 2009;157:1541–8.

    PubMed  CAS  Google Scholar 

  100. Garmestani K, Milenic DE, Plascjak PS, Brechbiel MW. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Yand 111In labeled Herceptin. Nucl Med Biol 2002;29:599–606.

    PubMed  CAS  Google Scholar 

  101. Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30:716–20.

    PubMed  CAS  Google Scholar 

  102. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 2005;46:92S–8S.

    PubMed  CAS  Google Scholar 

  103. Helisch A, Förster GJ, Reber H, Buchholz HG, Arnold R, Göke B, et al. Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1-Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2004;31:1386–92.

    PubMed  CAS  Google Scholar 

  104. Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol 2004;49:4543–61.

    PubMed  CAS  Google Scholar 

  105. Pentlow KS, Finn RD, Larson SM, Erdi YE, Beattie BJ, Humm JL. Quantitative imaging of yttrium-86 with PET. The occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging 2000;3:85–90.

    PubMed  Google Scholar 

  106. Wiseman GA, Leigh B, Erwin WD, Lamonica D, Kornmehl E, Spies SM, et al. Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma. Cancer 2002;94:1349–57.

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Chiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopci, E., Chiti, A., Castellani, M.R. et al. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 38 (Suppl 1), 28–40 (2011). https://doi.org/10.1007/s00259-011-1772-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1772-6

Keywords

Navigation