Skip to main content
Log in

Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 17 November 2010

Abstract

This proposal for standardization of 123I-metaiodobenzylguanidine (iobenguane, MIBG) cardiac sympathetic imaging includes recommendations for patient information and preparation, radiopharmaceutical, injected activities and dosimetry, image acquisition, quality control, reconstruction methods, attenuation, scatter and collimator response compensation, data analysis and interpretation, reports, and image display. The recommendations are based on evidence coming from original or scientific studies whenever possible and as far as possible reflect the current state-of-the-art in cardiac MIBG imaging. The recommendations are designed to assist in the practice of performing, interpreting and reporting cardiac sympathetic imaging. The proposed standardization does not include clinical indications, benefits or drawbacks of cardiac sympathetic imaging, and does not address cost benefits or cost effectiveness; however, clinical settings of potential utility are mentioned. Standardization of MIBG cardiac sympathetic imaging should contribute to increasing its clinical applicability and integration into current nuclear cardiology practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bombardieri E, Aktolun C, Baum RP, Bishof-Delaloye A, Buscombe J, Chatal JF, et al. 131I/123I-Metaiodobenzylguanidine (MIBG) scintigraphy procedure guidelines for tumour imaging. https://www.eanm.org/scientific_info/guidelines/gl_onco_mibg.pdf. Accessed 24 May 2010.

  2. Yamashina S, Yamazaki J. Neuronal imaging using SPECT. Eur J Nucl Med Mol Imaging 2007;34:S62–73.

    Article  CAS  PubMed  Google Scholar 

  3. Agostini D, Carrió I, Verberne HJ. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging 2009;36:555–9.

    Article  PubMed  Google Scholar 

  4. Carrió I, Cowie MR, Yamazaki J, Udelson J, Camici PG. Cardiac sympathetic imaging with mIBG in heart failure. Am Coll Cardiol Img 2010;3:92–100.

    Google Scholar 

  5. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun 1992;13:513–21.

    Article  CAS  PubMed  Google Scholar 

  6. Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interaction, cytotoxicity and dosimetry. Eur J Nucl Med 1994;21:545–59.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro B, Gross MD. Radiochemistry, biochemistry, and kinetics of 131I-metaiodobenzylguanidine (MIBG) and 123I-MIBG: clinical implications of the use of 123I-MIBG. Med Pediatr Oncol 1987;15:170–7.

    Article  CAS  PubMed  Google Scholar 

  8. European Commission. Council Directive 97/43/Euratom of 30 June 1997 on health protection of individuals against the dangers of ionizing radiation in relation to medical exposure, and repealing Directive 84/466/Euratom. Official Journal of the European Union L 1997;180:22–7.

    Google Scholar 

  9. GE Healthcare. AdreView: Iobenguane I 123 injection. Revised September 2008. URL: http://md.gehealthcare.com/shared/pdfs/pi/adreview.pdf. Accessed 24 May 2010.

  10. Ishibashi N, Abe K, Furuhashi S, Fukushima S, Yoshinobu T, Takahashi M, et al. Adverse allergic reaction to 131I MIBG. Ann Nucl Med 2009;23:697–9.

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs F, Thierens H, Piepsz A, Bacher K, Van de Wiele C, Ham H, et al. Optimized tracer-dependent dosage cards to obtain weight independent effective doses. Eur J Nucl Med Mol Imaging 2005;32:581–8.

    Article  CAS  PubMed  Google Scholar 

  12. Olivier P, Colarinha P, Fettich J, Fischer S, Frökier J, Giammarile F, et al. Guidelines for radioiodinated MIBG scintigraphy in children. Eur J Nucl Med Mol Imaging 2003;30:B45–50.

    Article  PubMed  Google Scholar 

  13. ICRP. Radiation dose to patients from radiopharmaceuticals. ICRP Publication 80. Ann ICRP 1998;28(3).

  14. Verberne HJ, Feenstra C, de Jong WM, Somsen GA, Van Eck-Smit BL. Busemann Sokole E. Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging 2005;32:1100–7.

    Article  PubMed  Google Scholar 

  15. Dobbeleir AA, Hambye AS, Franken PR. Influence of high energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I labelled compounds in clinical practice. Eur J Nucl Med 1999;26:655–8.

    Article  CAS  PubMed  Google Scholar 

  16. Inoue Y, Suzuki A, Shirouzu I, Machida T, Yoshizawa Y, Akita F, et al. Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 2003;10:623–32.

    Article  PubMed  Google Scholar 

  17. Verberne HJ, Habraken JB, van Eck-Smit BL, Agostini D, Jacobson AF. Variations in 123I-metaiodobenzylguanidine (MIBG) late heart mediastinal ratios in chronic heart failure: a need for standardisation and validation. Eur J Nucl Med Mol Imaging 2008;35:547–53.

    Article  CAS  PubMed  Google Scholar 

  18. Hesse B, Tägil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J, et al. EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 2005;32:855–97.

    Article  CAS  PubMed  Google Scholar 

  19. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255–76.

    Article  PubMed  Google Scholar 

  20. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927–34.

    Article  PubMed  Google Scholar 

  21. IAEA. Quality control of nuclear medicine instruments 1991. TECDOC-602. International Atomic Energy Agency, Vienna

  22. Society of Nuclear Medicine. Procedure guideline for general imaging, version 2.0. Reston, VA: Society of Nuclear Medicine, 2004.

  23. NEMA. Standards publication NU 1-2001: Performance measurements of scintillation cameras. Rosslyn, VA: National Electrical Manufacturers Association, 2001.

  24. Germano G, Chua T, Kavanagh PB, Kiat H, Berman DS. Detection and correction of patient motion in dynamic and static myocardial SPECT using a multi-detector camera. J Nucl Med 1993;34:1349–55.

    CAS  PubMed  Google Scholar 

  25. Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, et al. Quantitative assessment of motion artifacts and validation of a new motion-correction program for myocardial perfusion SPECT. J Nucl Med 2001;42:687–94.

    CAS  PubMed  Google Scholar 

  26. Hutton BF, Hudson HM, Beekman FJ. A clinical perspective of accelerated statistical reconstruction. Eur J Nucl Med 1997;24:797–808.

    CAS  PubMed  Google Scholar 

  27. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Nucl Sci 1994;13:601–9.

    CAS  Google Scholar 

  28. Llacer J, Velkerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography. IEEE Trans Med Imaging 1989;8:186–93.

    Article  CAS  PubMed  Google Scholar 

  29. Germano G, Kavanagh PB, Chen J, Waechter P, Su HT, Kiat H, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995;36:2127–32.

    CAS  PubMed  Google Scholar 

  30. Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm. J Nucl Med 1995;36:1115–22.

    CAS  PubMed  Google Scholar 

  31. Kobayashi H, Momose M, Kanaya S, Kondo C, Kusakabe K, Mitsuhashi N. Scatter correction by two-window method standardizes cardiac I-123 MIBG uptake in various gamma camera systems. Ann Nucl Med 2003;17:309–13.

    Article  PubMed  Google Scholar 

  32. Nakajima K, Matsubara K, Ishikawa T, Motomura N, Maeda R, Akhter N, et al. Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol 2007;14:843–51.

    Article  PubMed  Google Scholar 

  33. Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging 2004;31:761–82.

    Article  PubMed  Google Scholar 

  34. Wackers FJT. Attenuation compensation of cardiac SPECT: a critical look at a confusing world (editorial). J Nucl Cardiol 2002;9:438–40.

    Article  Google Scholar 

  35. Merlet P, Valette H, Dubois-Rande JL, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure. J Nucl Med 1992;33:471–7.

    CAS  PubMed  Google Scholar 

  36. Estorch M, Carrió I, Berna L, Lopez-Pousa J, Torres G. Myocardial iodine-labeled metaiodobenzylguanidine uptake relates to age. J Nucl Cardiol 1995;2:126–32.

    CAS  PubMed  Google Scholar 

  37. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implications for clinical studies. J Nucl Cardiol 2004;11:126–33.

    Article  PubMed  Google Scholar 

  38. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac events. J Nucl Med 2001;42:1757–67.

    CAS  PubMed  Google Scholar 

  39. Chen W, Botvinick EH, Alavi A, Zhang Y, Yang S, Perini R, et al. Age-related decrease in cardiopulmonary adrenergic neuronal function in children as assessed by I-123 metaiodobenzylguanidine imaging. J Nucl Cardiol 2008;15:73–9.

    Article  PubMed  Google Scholar 

  40. Gill JS, Hunter GJ, Gane G, Camm AJ. Heterogeneity of the human myocardial sympathetic innervation: in vivo demonstration by iodine 123-labeled metaiodobenzylguanidine scintigraphy. Am Heart J 1993;126:390–8.

    Article  CAS  PubMed  Google Scholar 

  41. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.

    Article  PubMed  Google Scholar 

  42. Bax JJ, Kraft OR, Buxton AE, Fjeld JG, Parizek P, Agostini D, et al. 123I-mIBG Scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 2008;1:131–40.

    Article  PubMed  Google Scholar 

  43. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212–21.

    Article  PubMed  Google Scholar 

  44. American Heart Association, American College of Cardiology, and Society of Nuclear Medicine. Standardization of cardiac tomographic imaging. From the Committee on Advanced Cardiac Imaging and Technology, Council on Clinical Cardiology, American Heart Association; Cardiovascular Imaging Committee, American College of Cardiology; and Board of Directors, Cardiovascular Council, Society of Nuclear Medicine. Circulation 1992;86:338–9.

    Google Scholar 

  45. Merlet P, Benvenuti C, Moyse D, Pouillart F, Dubois-Rande JL, Duval AM, et al. Prognostic value of MIBG imaging in idiopathic dilated cardiomyopathy. J Nucl Med 1999;40:917–23.

    CAS  PubMed  Google Scholar 

  46. Cohen-Solal A, Esanu Y, Logeart D, Pessione F, Dubois C, Dreyfus G, et al. Cardiac metaiodobenzylguanidine uptake in patients with moderate chronic heart failure: relationship with peak oxygen uptake and prognosis. J Am Coll Cardiol 1999;33:759–66.

    Article  CAS  PubMed  Google Scholar 

  47. Yamada T, Shimonagata T, Fukunami M, Kumagai K, Ogita H, Hirata A, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol 2003;41:231–8.

    Article  PubMed  Google Scholar 

  48. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 2008;9:1147–59.

    Article  Google Scholar 

  49. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 2008;35:535–46.

    Article  PubMed  Google Scholar 

  50. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, et al. I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 2003;10:121–31.

    Article  PubMed  Google Scholar 

  51. Paul M, Schafers M, Kies P, Acil T, Schafers K, Breithardt G, et al. Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation. Eur J Nucl Med Mol Imaging 2006;33:866–70.

    Article  PubMed  Google Scholar 

  52. Nagahara D, Nakata T, Hashimoto A, Wakabayashi T, Kyuma M, Noda R, et al. Predicting the need for an implantable cardioverter defibrillator using cardiac metaiodobenzylguanidine activity together with plasma natriuretic peptide concentration or left ventricular function. J Nucl Med 2008;49:225–33.

    Article  PubMed  Google Scholar 

  53. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 2009;53:426–35.

    Article  CAS  PubMed  Google Scholar 

  54. Tamaki N, Kusakabe K, Kubo A, Kumazaki T, Shimamoto K, Senda S, et al. Guidelines for clinical use of cardiac nuclear medicine (JSC2005). Circ J 2005;69 Suppl 4:1125–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Flotats.

Additional information

Disclaimer

This proposal summarizes the views of the Cardiovascular Committee of the EANM and the European Council of Nuclear Cardiology, and reflects recommendations for which the EANM and the ESC cannot be held responsible. The recommendations should be taken in the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.

On behalf of the Cardiovascular Committee of the EANM and the European Council of Nuclear Cardiology.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-010-1671-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flotats, A., Carrió, I., Agostini, D. et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging 37, 1802–1812 (2010). https://doi.org/10.1007/s00259-010-1491-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1491-4

Keywords

Navigation