Skip to main content
Log in

Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

90Y-labelled compounds used in targeted radiotherapy are usually imaged with SPECT by recording the bremsstrahlung X-rays of the β decay. The continuous shape of the X-ray spectrum induces the presence of a significant fraction of scatter rays in the acquisition energy window, reducing the accuracy of biodistribution and of dosimetry assessments.

Methods

The aim of this paper is to use instead the low branch of e e+ pair production in the 90Y decay. After administration of 90Y-labelled SIR-Spheres by catheterization of both liver lobes, the activity distribution is obtained by 90Y time-of-flight (TOF) PET imaging. The activity distribution is convolved with a dose irradiation kernel in order to derive the regional dosimetry distribution.

Results

Evaluation on an anatomical phantom showed that the method provided an accurate dosimetry assessment. Preliminary results on a patient demonstrated a high-resolution absorbed dose distribution with a clear correlation with tumour response.

Conclusion

This supports the implementation of 90Y PET in selective internal radiation therapy of the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brans B, Linden O, Giammarile F, Tennvall J, Punt C. Clinical applications of newer radionuclide therapies. Eur J Cancer 2006;42(8):994–1003.

    Article  CAS  PubMed  Google Scholar 

  2. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 2005;46:13S–7.

    PubMed  Google Scholar 

  3. Flux G, Bardies M, Monsieurs M, Savolainen S, Strand SE, Lassmann M et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006;16:47–59.

    PubMed  Google Scholar 

  4. Flux G, Bardies M, Chiesa C, Monsieurs M, Savolainen S, Strand SE, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 2007;34(10):1699–700.

    Article  PubMed  Google Scholar 

  5. Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJ, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging 2007;34(5):772–86.

    Article  CAS  PubMed  Google Scholar 

  6. Sgouros G, Frey E, Wahl R, He B, Prideaux A, Hobbs R. Three-dimensional imaging-based radiobiological dosimetry. Semin Nucl Med 2008;38(5):321–34.

    Article  PubMed  Google Scholar 

  7. Stabin MG, Brill AB. State of the art in nuclear medicine dose assessment. Semin Nucl Med 2008;38(5):308–20.

    Article  PubMed  Google Scholar 

  8. Mansberg R, Sorensen N, Mansberg V, Van der Wall H. Yttrium 90 Bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging 2007;34(11):1887.

    Article  PubMed  Google Scholar 

  9. Shen S, DeNardo GL, DeNardo SJ. Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys 1994;21(9):1409–17.

    Article  CAS  PubMed  Google Scholar 

  10. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol 2008;53(20):5689–703.

    Article  CAS  PubMed  Google Scholar 

  11. Sgouros G. Yttrium-90 biodistribution by yttrium-87 imaging: a theoretical feasibility analysis. Med Phys 1998;25(8):1487–90.

    Article  CAS  PubMed  Google Scholar 

  12. Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med 2005;46(1):92S–8.

    CAS  PubMed  Google Scholar 

  13. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005;46(1):99S–106.

    CAS  PubMed  Google Scholar 

  14. Walrand S, Jamar F, Mathieu I, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30(3):354–61.

    CAS  PubMed  Google Scholar 

  15. Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for removal of spurious activity introduced by cascade gamma rays. Med Phys 2003;30(9):2410–23.

    Article  PubMed  Google Scholar 

  16. Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30(5):716–20.

    CAS  PubMed  Google Scholar 

  17. Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19(4):482–90.

    CAS  PubMed  Google Scholar 

  18. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 2000;27:273–82.

    Article  CAS  PubMed  Google Scholar 

  19. de Jong M, Bakker WH, Krenning EP, Breeman WAP, van der Pluijm ME, Bernard BF, et al. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,d-Phe1, Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med 1997;24:368–71.

    Article  PubMed  Google Scholar 

  20. Cremonesi M, Ferrari M, Bodei L, Tosi G, Paganelli G. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med 2006;47(9):1467–75.

    CAS  PubMed  Google Scholar 

  21. Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, et al. MIRD pamphlet No. 20: the effect of model assumptions on kidney dosimetry and response—implications for radionuclide therapy. J Nucl Med 2008;49:1884–99.

    Article  PubMed  Google Scholar 

  22. Quadri SM, Shao Y, Blum JE, Leichner PK, Williams JR, Vriesendorp HM. Preclinical evaluation of intravenously administered 111In- labeled and 90Y-labeled B72.3 immunoconjugate (GYK-DTPA) in beagle dogs. Nucl Med Biol 1993;20(5):559–70.

    Article  CAS  PubMed  Google Scholar 

  23. Carrasquillo JA, White JD, Paik CH, Raubitschek A, Le N, Rotman M, et al. Similarities and differences in 111In- and 90Y-labeled 1B4M-DTPA antiTac monoclonal antibody distribution. J Nucl Med 1999;40(2):268–76.

    CAS  PubMed  Google Scholar 

  24. Ford K. Predicted 0+ level of Zr90. Phys Rev 1955;98:1516.

    Article  CAS  Google Scholar 

  25. Nickles RJ, Roberts AD, Nye JA, Converse AK, Barnhart TE, Avila-Rodriguez MA, et al. Assaying and PET imaging of yttrium-90: 1>>34 ppm>0. IEEE Nucl Sci Symp Conf Rec 2004;6:3412–4.

    Article  Google Scholar 

  26. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 2007;65:318–27.

    Article  CAS  PubMed  Google Scholar 

  27. Langhoff H, Hennies H. Zum experimentellen Nachweis von Zweiquantenzerfall beim 0+-0+-Übergang des Zr90. Z Phys 1961;164:166–73.

    Article  CAS  Google Scholar 

  28. Lhommel R, Goffette P, Van den Eynde M, Jamar F, Pauwels S, Bilbao JI, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging 2009;36:1696. doi:10.1007/s00259-009-1210-1.

    Article  PubMed  Google Scholar 

  29. Gulec SA, Siegel JA. Posttherapy radiation safety considerations in radiomicrosphere treatment with 90Y-microspheres. J Nucl Med 2007;48(12):2080–6.

    Article  CAS  PubMed  Google Scholar 

  30. Campbell JM, Wong CO, Muzik O, Marples B, Joiner M, Burmeister J. Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography. Int J Radiat Oncol Biol Phys 2009;74(1):313–20.

    CAS  PubMed  Google Scholar 

  31. Bilbao JI, Reiser MF, editors. Liver radioembolization with 90Y microspheres (medical radiology/diagnostic imaging). Berlin: Springer; 2008. p. 86.

  32. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007;48:471–80.

    PubMed  Google Scholar 

  33. Wang W, Hu Z, Gualtieri EE, Parma MJ, Walsh ES, Sebok D, et al. Systematic and distributed time-of-flight list mode PET reconstruction. IEEE Nucl Sci Symp Conf Rec 2006;3:1715–22.

    Google Scholar 

  34. Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans Nucl Sci 2001;48(1):24–30.

    Article  Google Scholar 

  35. Cross WG, Freedman NO, Wong PY. Tables of beta-ray dose distributions in water. Ontario: Atomic Energy of Canada, Ltd, Report No AECL-10521; 1992. http://inisdb2.iaea.org/inis/php/download.php?s=p&rn=23047981.

  36. Franquiz JM, Chigurupati S, Kandagatla K. Beta voxel S values for internal emitter dosimetry. Med Phys 2003;30(6):1030–2.

    Article  CAS  PubMed  Google Scholar 

  37. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, et al. MIRD Pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med 1999;40:11S–36.

    CAS  PubMed  Google Scholar 

  38. Vardi Y, Lee D. From image deblurring to optimal investments: maximum likelihood solutions for positive linear inverse problems. J R Stat Soc Series B Stat Methodol 1993;55(3):569–612.

    Google Scholar 

  39. Phelps ME, editor. PET: physics, instrumentation, and scanners. New York: Springer; 2006.

  40. http://hps.org/publicinformation/radardecaydata.cfm.

  41. Kennedy A, Nag S, Salem R, Murthy R, McEwan AJ, Nutting C, et al. Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys 2007;68(1):13–23.

    PubMed  Google Scholar 

  42. US Nuclear Regulatory Commission. 2007–10: yttrium-90 theraspheres and sirspheres impurities. Washington, DC: US Nuclear Regulatory Commission; 2007. NRC Information Notice.

    Google Scholar 

  43. Stabin M, Konijnenberg M. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. J Nucl Med 2000;41(1):149–60.

    CAS  PubMed  Google Scholar 

  44. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 2005;46:1023–7.

    PubMed  Google Scholar 

  45. Moszynski M. NATO security through science series: radiation detectors for medical applications. Dordrecht: Springer; 2006. p. 293–315.

  46. Pepin CM, Berard P, Perrot AL, Pepin C, Houde D, Lecomte R, et al. Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans Nucl Sci 2004;51(3):789–95.

    Article  CAS  Google Scholar 

  47. Pidol L, Kahn-Harari A, Viana B, Virey E, Ferrand B, Dorenbos P, et al. High efficiency of lutetium silicate scintillators, Ce-doped LPS, and LYSO crystals. IEEE Trans Nucl Sci 2004;51(3):1084–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Glenn Flux, Ph.D., for helpful comments.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Walrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lhommel, R., van Elmbt, L., Goffette, P. et al. Feasibility of 90Y TOF PET-based dosimetry in liver metastasis therapy using SIR-Spheres. Eur J Nucl Med Mol Imaging 37, 1654–1662 (2010). https://doi.org/10.1007/s00259-010-1470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-010-1470-9

Keywords

Navigation