Skip to main content

Advertisement

Log in

Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Radioimmunotherapy (RIT) is a new treatment option for patients with non-Hodgkin lymphoma (NHL). Response to RIT currently remains difficult to predict using conventional prognostic factors and could be refined using functional imaging. The goal of this work is to evaluate the value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in predicting response to Yttrium 90-labeled monoclonal antibodies for patients with NHL.

Methods

Thirty-five patients with NHL who had undergone 18F-FDG PET prior to RIT with either 90Y-ibritumomab tiuxetan (group A; n = 17) or 90Y-epratuzumab tetraxetan (group B; n = 18) were included in this retrospective study. Four functional criteria were determined for each tumour lesion in a given patient: maximum and mean standard uptake values (SUVmax and SUVmean), functional lesion volume (LVol) and total lesion glycolysis (TLG, product of the volume and the SUVmean). For each patient, we determined highest SUVmax and SUVmean, cumulative TLG (TLGcum) and sum of all LVol (TVol) and compared their predictive value on response (complete or partial response according to IWC) to RIT with those of conventional prognostic factors in group A and B.

Results

A total of 154 lesions were analysed. Nineteen patients (54%) responded to RIT according to IWC. In group A, response rate was 54, 75 and 75% in patients with a SUV max <20 g/ml, a TVol <100 ml and a TLGcum <1060 g, respectively while no patient above these thresholds responded (p < 0.005). In group B, the response rate was 93% for with SUVmax <15 g/ml while no patient above this threshold responded. With TLGcum below 1,360 g, 100% of the patient responded, compared with 37% of patients whose TLGcum was above this threshold (p < 0.05). By contrast, conventional prognostic factors failed to predict response.

Conclusions

Our preliminary results indicate that pre-therapy 18F-FDG PET functional parameters such as SUVmax and TLG may help predicting more accurately response to single agent Y90 based RIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sharkey RM, Brenner A, Burton J, Hajjar G, Toder SP, Alavi A, et al. Radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-Epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med. 2003;44:2000–18.

    CAS  PubMed  Google Scholar 

  2. Linden O, Hindorf C, Cavallin-Stahl E, Wegener WA, Goldenberg DM, Horne H, et al. Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res. 2005;11:5215–22.

    Article  CAS  PubMed  Google Scholar 

  3. Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM. 90Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin's lymphoma. J Nucl Med. 2003;44:77–84.

    CAS  PubMed  Google Scholar 

  4. Emmanouilides C, Witzig TE, Gordon LI, Vo K, Wiseman GA, Flinn IW, et al. Treatment with yttrium 90 ibritumomab tiuxetan at early relapse is safe and effective in patients with previously treated B-cell non-Hodgkin's lymphoma. Leuk Lymphoma. 2006;47:629–36.

    Article  CAS  PubMed  Google Scholar 

  5. Kraeber-Bodere F, Morschhauser F, Huglo D, Petillon M, Chatal J, Harousseau JL, et al. Fractionated radioimmunotherapy in NHL with DOTA-conjugated, humanized anti-CD22 IgG, epratuzumab: results at high cumulative doses of 90Y. J Clin Oncol. 2008;26 (abstract 8502).

  6. Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma. J Clin Oncol. 2002;20:3262–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon LI, Molina A, Witzig T, Emmanouilides C, Raubtischek A, Darif M, et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood. 2004;103:4429–31.

    Article  CAS  PubMed  Google Scholar 

  8. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–86.

    Article  PubMed  Google Scholar 

  9. Morschhauser F, Illidge T, Huglo D, Martinelli G, Paganelli G, Zinzani PL, et al. Efficacy and safety of yttrium-90 ibritumomab tiuxetan in patients with relapsed or refractory diffuse large B-cell lymphoma not appropriate for autologous stem-cell transplantation. Blood. 2007;110:54–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bodet-Milin C, Kraeber-Bodere F, Dupas B, Morschhauser F, Gastinne T, Le Gouill S, et al. Evaluation of response to fractionated radioimmunotherapy with 90Y-epratuzumab in non-Hodgkin's lymphoma by 18F-fluorodeoxyglucose positron emission tomography. Haematologica. 2008;93:390–7.

    Article  PubMed  Google Scholar 

  11. Ulaner GA, Colletti PM, Conti PS. B-cell non-Hodgkin lymphoma: PET/CT evaluation after 90Y-ibritumomab tiuxetan radioimmunotherapy–initial experience. Radiology. 2008;246:895–902.

    Article  PubMed  Google Scholar 

  12. Jacene HA, Filice R, Kasecamp W, Wahl RM. 18F-FDG PET/CT for monitoring the response of lymphoma to radioimmunotherapy. J Nucl Med. 2009;50:8–17.

    Article  CAS  PubMed  Google Scholar 

  13. Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, et al. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2:159–71.

    Article  PubMed  Google Scholar 

  14. Esnault JM, Vermandel M, Morschhauser F, Steinling M, Huglo D. Détermination par logique floue des volumes tumoraux en TEP: application au suivi de la radio-immunothérapie des lymphomes. Méd Nucl. 2007;31:656–64.

    Article  Google Scholar 

  15. Huglo D, Vermandel M, Betrouni N, Rousseau J, Vasseur C, Steinling M. Experimental comparison of FDG-PET volumes determined by two segmentation methods. Eur J Nucl Med Mol Imaging. 2006;33(suppl):316P.

    Google Scholar 

  16. Huglo D, Leteurtre E, Porte H. Clinical comparison of FDG-PET volumes determined by two segmentation methods. Eur J Nucl Med Mol Imaging. 2006;33(suppl):148P.

    Google Scholar 

  17. Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the Committee on Hodgkin's Disease Staging Classification. Cancer Res. 1971;31:1860–61.

    CAS  PubMed  Google Scholar 

  18. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin's lymphoma. N Engl J Med. 1993;329:987–94.

    Article  Google Scholar 

  19. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, et al. Follicular lymphoma international prognostic index. Blood. 2004;104:1258–65.

    Article  CAS  PubMed  Google Scholar 

  20. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17:1244P.

    Google Scholar 

  21. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol. 2007;25:571–8.

    Article  PubMed  Google Scholar 

  22. Jaffe E, Harris N, Stein H, Vardiman J. WHO Pathology & Genetics -Tumours of heamatopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 177–8.

    Google Scholar 

  23. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin's disease. J Nucl Med. 2002;43:1018–27.

    PubMed  Google Scholar 

  24. Spaepen K, Stroobants S, Dupont P, Van Steenweghen S, Thomas J, Vandenberghe P, et al. Prognostic value of positron emission tomography with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin's lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001;19:414–9.

    CAS  PubMed  Google Scholar 

  25. Mikhaeel NG, Hutchings M, Fields PA, O'Doherty MJ, Timothy AR. FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol. 2005;16:1514–23.

    Article  CAS  PubMed  Google Scholar 

  26. Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Thomas J, de Groot T, et al. Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin's lymphoma. Ann Oncol. 2002;13:1356–63.

    Article  CAS  PubMed  Google Scholar 

  27. Spaepen K, Stroobants S, Verhoef G, Mortelmans L. Positron emission tomography with [(18)F]FDG for therapy response monitoring in lymphoma patients. Eur J Nucl Med Mol Imaging. 2003;30(suppl):97–105.

    Google Scholar 

  28. Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Maertens J, Bormans G, et al. Prognostic value of pretransplantation positron emission tomography using fluorine 18-fluorodeoxyglucose in patients with aggressive lymphoma treated with high-dose chemotherapy and stem cell transplantation. Blood. 2003;102:53–9.

    Article  CAS  PubMed  Google Scholar 

  29. Haioun C, Itti E, Rahmouni A, Brice P, Rain JD, Belhadj K, et al. [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood. 2005;106:1376–81.

    Article  CAS  PubMed  Google Scholar 

  30. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Persistent tumor 18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin's lymphoma. Haematologica. 2000;85:613–8.

    CAS  PubMed  Google Scholar 

  31. Torizuka T, Nakamura F, Kanno T, Futatsubashi M, Yoshikawa E, Okada H, et al. Early therapy monitoring with FDG-PET in aggressive non-Hodgkin's lymphoma and Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging. 2004;31:22–8.

    Article  PubMed  Google Scholar 

  32. Torizuka T, Zasadny KR, Kison PV, Rommelfanger SG, Kaminski MS, Wahl RL. Metabolic response of non-Hodgkin's lymphoma to 131I-anti-B1 radioimmunotherapy: evaluation with FDG PET. J Nucl Med. 2000;41:999–1005.

    CAS  PubMed  Google Scholar 

  33. Okada J, Yoshikawa K, Imazeki K, Minoshima S, Uno K, Itami J, et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis. J Nucl Med. 1991;32:686–91.

    CAS  PubMed  Google Scholar 

  34. Ahuja V, Coleman RE, Herndon J, Patz EF Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer. 1998;83:918–24.

    Article  CAS  PubMed  Google Scholar 

  35. Fukunaga T, Okazumi S, Koide Y, Isono K, Imazeki K. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J Nucl Med. 1998;39:1002–7.

    CAS  PubMed  Google Scholar 

  36. Eary JF, O'Sullivan F, Powitan Y, Chandhury KR, Vernon C, Bruckner JD, et al. Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging. 2002;29:1149–54.

    Article  CAS  PubMed  Google Scholar 

  37. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000;27:643–6.

    Article  CAS  PubMed  Google Scholar 

  38. Okada J, Yoshikawa K, Itami M, Imaseki K, Uno K, Itami J, et al. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med. 1992;33:325–9.

    CAS  PubMed  Google Scholar 

  39. Silverman DH, Delpassand ES, Torabi F, Goy A, McLaughlin P, Murray JL. Radiolabeled antibody therapy in non-Hodgkin's lymphoma: radiation protection, isotope comparisons and quality of life issues. Cancer Treat Rev. 2004;30:165–72.

    Article  CAS  PubMed  Google Scholar 

  40. Song H, Du Y, Sgouros G, Prideaux A, Frey E, Wahl RL. Therapeutic potential of 90Y- and 131I-labeled anti-CD20 monoclonal antibody in treating non-Hodgkin's lymphoma with pulmonary involvement: a Monte Carlo-based dosimetric analysis. J Nucl Med. 2007;48:150–7.

    PubMed  Google Scholar 

  41. Borghaei H, Wallace SG, Schilder RJ. Factors associated with toxicity and response to yttrium 90-labeled ibritumomab tiuxetan in patients with indolent non-Hodgkin's lymphoma. Clin Lymphoma. 2004;5(suppl):16–21.

    Article  Google Scholar 

  42. Cheson BD. Radioimmunotherapy of non-Hodgkin's lymphomas. Curr Drug Targets. 2006;7:1293–300.

    Article  CAS  PubMed  Google Scholar 

  43. Iagaru A, Gambhir SS, Goris ML. 90Y-ibritumomab therapy in refractory non-Hodgkin's lymphoma: observations from 111In-ibritumomab pretreatment imaging. J Nucl Med. 2008;49:1809–12.

    Article  PubMed  Google Scholar 

  44. Witzig TE, White CA, Wiseman GA, Gordon LI, Emmanouilides C, Raubitschek A, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin's lymphoma. J Clin Oncol. 1999;17:3793–803.

    CAS  PubMed  Google Scholar 

  45. Witzig TE, Molina A, Gordon LI, Emmanouilides C, Schilder RJ, Flinn IW, et al. Long-term responses in patients with recurring or refractory B-cell non-Hodgkin lymphoma treated with yttrium 90 ibritumomab tiuxetan. Cancer. 2007;109:1804–10.

    Article  CAS  PubMed  Google Scholar 

  46. Berkowitz A, Basu S, Srinivas S, Sankaran S, Schuster S, Alavi A. Determination of whole-body metabolic burden as a quantitative measure of disease activity in lymphoma: a novel approach with fluorodeoxyglucose-PET. Nucl Med Commun. 2008;29:521–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully thank Professor Xavier Marchandise, Prof. David M. Goldenberg and Dr. Jean Rousseau for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Huglo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazaentre, T., Morschhauser, F., Vermandel, M. et al. Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37, 494–504 (2010). https://doi.org/10.1007/s00259-009-1275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1275-x

Keywords

Navigation