Skip to main content
Log in

Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to compare the diagnostic accuracy of 18F-fluorodeoxyglucose (FDG) PET/CT versus standard planar bone scintigraphy (BS) and 18F-labelled NaF (18F) PET for the detection of bone metastases (BM) in non-small cell lung cancer (NSCLC).

Methods

18F-FDG PET/CT was performed in 126 patients with NSCLC. Within 7 days BS (n = 58) or 18F PET (n = 68) was performed. 18F-FDG PET/CT, BS and 18F PET were evaluated by two experienced readers. Lesions were graded on a scale from 1 (definite BM) to 5 (degenerative lesion), and equivocal lesions were determined as indifferent (grade 3).

Results

A total of 92 patients showed degenerative lesions (grade 4/5) on PET/CT, BS or 18F PET. In 34 patients (27%) BM lesions were diagnosed (grades 1 and 2). In 13 of 18 patients BM were concordantly diagnosed with PET/CT and 18F PET. PET/CT showed more BM compared to 18F PET (53 vs 40). In one patient one osteolytic BM was false-negative on 18F PET. However, 18F PET identified four patients with BM compared to negative findings on PET/CT. Of 16 patients, 11 had concordant findings of BM on PET/CT and BS. In three patients BS was false-negative and in two patients BM were diagnosed as indifferent.

Conclusion

Integrated 18F-FDG PET/CT is superior to BS in the detection of osteolytic BM in NSCLC. Thus, PET/CT may obviate the need to perform additional BS or 18F PET in the staging of NSCLC, which significantly reduces costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tritz DB, Doll DC, Ringenberg QS, Anderson S, Madsen R, Perry MC, et al. Bone marrow involvement in small cell lung cancer. Clinical significance and correlation with routine laboratory variables. Cancer 1989;63:763–6. doi:10.1002/1097-0142(19890215)63:4<763::AID-CNCR2820630426>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  2. Bezwoda WR, Lewis D, Livini N. Bone marrow involvement in anaplastic small cell lung cancer. Diagnosis, hematologic features, and prognostic implications. Cancer 1986;58:1762–5. doi:10.1002/1097-0142(19861015)58:8<1762::AID-CNCR2820580830>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  3. Trillet V, Revel D, Combaret V, Favrot M, Loire R, Tabib A, et al. Bone marrow metastases in small cell lung cancer: detection with magnetic resonance imaging and monoclonal antibodies. Br J Cancer 1989;60:83–8.

    CAS  PubMed  Google Scholar 

  4. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 1999;40:1623–9.

    CAS  PubMed  Google Scholar 

  5. Schirrmeister H, Guhlmann A, Kotzerke J, Santjohanser C, Kühn T, Kreienberg R, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 1999;17:2381–9.

    CAS  PubMed  Google Scholar 

  6. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003;348:2500–7. doi:10.1056/NEJMoa022136.

    Article  PubMed  Google Scholar 

  7. Donohoe KJ, Henkin RE, Royal HD, Brown ML, Collier BD, O’Mara RE, et al. Procedure guidelines for bone scintigraphy: 1.0. Society of Nuclear Medicine. J Nucl Med 1996;37:1903–6.

    CAS  PubMed  Google Scholar 

  8. Krasnow AZ, Hellman RS, Timins ME, Collier D, Anderson T, Isitman AT. Diagnostic bone scanning in oncology. Semin Nucl Med 1997;27:107–41. doi:10.1016/S0001-2998(97)80043-8.

    Article  CAS  PubMed  Google Scholar 

  9. Steinborn MM, Heuck AF, Tiling R, Bruegel M, Gauger L, Reiser MF. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 1999;23:123–9. doi:10.1097/00004728-199901000-00026.

    Article  CAS  PubMed  Google Scholar 

  10. Roland J, van den Weygaert D, Krug B, Brans B, Scalliet P, Vandevivere J. Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med 1995;20:1052–4. doi:10.1097/00003072-199512000-00002.

    Article  CAS  PubMed  Google Scholar 

  11. Sedonja I, Budihna NV. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 1999;24:407–13. doi:10.1097/00003072-199906000-00006.

    Article  CAS  PubMed  Google Scholar 

  12. Schirrmeister H, Glatting G, Hetzel J, Nüssle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 2001;42:1800–4.

    CAS  PubMed  Google Scholar 

  13. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006;47:287–97.

    PubMed  Google Scholar 

  14. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375–9.

    CAS  PubMed  Google Scholar 

  15. Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 1998;25:1244–7. doi:10.1007/s002590050291.

    Article  CAS  PubMed  Google Scholar 

  16. Cheran SK, Herndon JE 2nd, Patz EF Jr. Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 2004;44:317–25. doi:10.1016/j.lungcan.2003.11.008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Krüger.

Additional information

Stefan Krüger and Andreas K. Buck contributed equally to the present study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, S., Buck, A.K., Mottaghy, F.M. et al. Detection of bone metastases in patients with lung cancer: 99mTc-MDP planar bone scintigraphy, 18F-fluoride PET or 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 36, 1807–1812 (2009). https://doi.org/10.1007/s00259-009-1181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1181-2

Keywords

Navigation