Skip to main content

Advertisement

Log in

Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Atherosclerosis is a dynamic inflammatory disorder. The biological composition and inflammatory state of an atherosclerotic plaque, rather than the degree of stenosis or its size are the major determinants of acute clinical events. A noninvasive technique to detect vulnerable atherosclerotic plaque is critically needed. FDG-PET/CT, a combined functional and structural whole-body imaging modality, holds great potential for this purpose. FDG uptake in large arteries has been frequently observed and is associated with cardiovascular risk factors. FDG accumulates in plaque macrophages and uptake is correlated with macrophage density. It is known that vascular FDG uptake and calcification do not overlap significantly and changes of FDG uptake are common, suggesting that FDG uptake may represent a dynamic inflammatory process. It has been reported that vascular FDG uptake can be attenuated by simvastatin in patients, and by the antiinflammatory drug probucol in rabbits. Vascular FDG uptake has been linked to cardiovascular events in some preliminary studies. Data from basic sciences, and animal and clinical studies support the emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Glass CK, Witztum JL. Atherosclerosis, the road ahead. Cell 2001;104:503–16.

    Article  PubMed  CAS  Google Scholar 

  2. Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003;5:781–92.

    Article  PubMed  CAS  Google Scholar 

  3. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 2005;280:21763–72.

    Article  PubMed  CAS  Google Scholar 

  4. Semenkovich CF. Insulin resistance and atherosclerosis. J Clin Invest 2006;116:1813–22.

    Article  PubMed  CAS  Google Scholar 

  5. Repa JJ, Mangelsdorf DJ. The liver X receptor gene team: potential new players in atherosclerosis. Nat Med 2002;8:1243–8.

    Article  PubMed  CAS  Google Scholar 

  6. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the unstable plaque. Prog Cardiovasc Dis 2002;44:349–56.

    Article  PubMed  Google Scholar 

  7. Robbie L, Libby P. Inflammation and atherothrombosis. Ann N Y Acad Sci 2001;947:167–79; discussion 179–80.

    PubMed  CAS  Google Scholar 

  8. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  9. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.

    PubMed  Google Scholar 

  10. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.

    Article  PubMed  CAS  Google Scholar 

  11. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 1988;78:1157–66.

    PubMed  CAS  Google Scholar 

  12. Myerburg RJ. Sudden cardiac death in persons with normal (or near normal) hearts. Am J Cardiol 1997;79:3–9.

    Article  PubMed  CAS  Google Scholar 

  13. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 1992;326:310–18.

    PubMed  CAS  Google Scholar 

  14. Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJ, Becker AE, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: the remodeling paradox. J Am Coll Cardiol 1998;32:655–62.

    Article  PubMed  CAS  Google Scholar 

  15. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–62.

    PubMed  CAS  Google Scholar 

  16. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996;94:932–8.

    PubMed  CAS  Google Scholar 

  17. Eliasziw M, Rankin RN, Fox AJ, Haynes RB, Barnett HJ. Accuracy and prognostic consequences of ultrasonography in identifying severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke 1995;26:1747–52.

    PubMed  CAS  Google Scholar 

  18. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992;71:343–53.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258:468–71.

    Article  PubMed  CAS  Google Scholar 

  20. Laitinen I, Marjamaki P, Haaparanta M, Savisto N, Laine VJ, Soini SL, et al. Non-specific binding of [(18)F]FDG to calcifications in atherosclerotic plaques: experimental study of mouse and human arteries. Eur J Nucl Med Mol Imaging 2006;33:1461–7.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao Y, Kuge Y, Zhao S, Morita K, Inubushi M, Strauss HW, et al. Comparison of 99mTc-annexin A5 with 18F-FDG for the detection of atherosclerosis in ApoE-/- mice. Eur J Nucl Med Mol Imaging 2007;34:1747–55.

    Article  PubMed  CAS  Google Scholar 

  22. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med 2005;46:455–63.

    PubMed  Google Scholar 

  23. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.

    PubMed  CAS  Google Scholar 

  24. Davies JR, Rudd JH, Fryer TD, Graves MJ, Clark JC, Kirkpatrick PJ, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642–7.

    Article  PubMed  Google Scholar 

  25. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  26. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005;12:294–301.

    Article  PubMed  Google Scholar 

  27. Rudd JH, Fayad ZA, Machac J, Weissberg PL, Davies JR, Warburton EA, et al. Response to ‘Laurberg JM, Olsen AK, Hansen SB, et al. Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation’ [Atherosclerosis 2006]. Atherosclerosis 2007;192:453–4; author reply 451–2.

    Article  PubMed  CAS  Google Scholar 

  28. Laurberg JM, Olsen AK, Hansen SB, Bottcher M, Morrison M, Ricketts SA, et al. Imaging of vulnerable atherosclerotic plaques with FDG-microPET: no FDG accumulation. Atherosclerosis 2007;192:275–82.

    Article  PubMed  CAS  Google Scholar 

  29. Vallabhajosula S, Machac J, Knesaurek K. Imaging atherosclerotic macrophage density by positron emission tomography using F-18 fluorodeoxyglucose (FDG). J Nucl Med 1996;37:38.

    Google Scholar 

  30. Lederman RJ, Raylman RR, Fisher SJ, Kison PV, San H, Nabel EG, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun 2001;22:747–53.

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis 1980;36:261–8.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Machac J, Helft G, Worthley SG, Tang C, Zaman AG, et al. Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl Med 2006;6:3.

    Article  PubMed  CAS  Google Scholar 

  33. Theron J, Tyler JL. Takayasu’s arteritis of the aortic arch: endovascular treatment and correlation with positron emission tomography. AJNR Am J Neuroradiol 1987;8:621–6.

    PubMed  CAS  Google Scholar 

  34. Mochizuki Y, Fujii H, Yasuda S, Nakahara T, Takahashi W, Ide M, et al. FDG accumulation in aortic walls. Clin Nucl Med 2001;26:68–9.

    Article  PubMed  CAS  Google Scholar 

  35. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 2001;26:314–19.

    Article  PubMed  CAS  Google Scholar 

  36. Yun M, Jang S, Cucchiara A, Newberg AB, Alavi A. 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med 2002;32:70–6.

    Article  PubMed  Google Scholar 

  37. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229:831–7.

    Article  PubMed  Google Scholar 

  38. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med 2004;45:1816–21.

    PubMed  Google Scholar 

  39. Bural GG, Torigian DA, Chamroonrat W, Houseni M, Chen W, Basu S, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 2008;35:562–9.

    Article  PubMed  Google Scholar 

  40. Basu S, Zhuang H, Alavi A. Imaging of lower extremity artery atherosclerosis in diabetic foot: FDG-PET imaging and histopathological correlates. Clin Nucl Med 2007;32:567–8.

    Article  PubMed  Google Scholar 

  41. Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007;49:1533–9.

    Article  PubMed  CAS  Google Scholar 

  42. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278–84.

    PubMed  Google Scholar 

  43. Meller J, Strutz F, Siefker U, Scheel A, Sahlmann CO, Lehmann K, et al. Early diagnosis and follow-up of aortitis with [(18)F]FDG PET and MRI. Eur J Nucl Med Mol Imaging 2003;30:730–6.

    PubMed  CAS  Google Scholar 

  44. Tahara N, Kai H, Nakaura H, Mizoguchi M, Ishibashi M, Kaida H, et al. The prevalence of inflammation in carotid atherosclerosis: analysis with fluorodeoxyglucose positron emission tomography. Eur Heart J 2007;28:2243–8.

    Article  PubMed  CAS  Google Scholar 

  45. Ben-Haim S, Kupzov E, Tamir A, Frenkel A, Israel O. Changing patterns of abnormal vascular wall F-18 fluorodeoxyglucose uptake on follow-up PET/CT studies. J Nucl Cardiol 2006;13:791–800.

    Article  PubMed  Google Scholar 

  46. Weissberg PL. Noninvasive imaging of atherosclerosis: the biology behind the pictures. J Nucl Med 2004;45:1794–5.

    PubMed  Google Scholar 

  47. Wu YW, Kao HL, Chen MF, Lee BC, Tseng WY, Jeng JS, et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med 2007;48:227–33.

    PubMed  CAS  Google Scholar 

  48. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818–24.

    Article  PubMed  Google Scholar 

  49. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825–31.

    Article  PubMed  CAS  Google Scholar 

  50. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization. Circulation 2001;103:926–33.

    PubMed  CAS  Google Scholar 

  51. Corti R, Fayad ZA, Fuster V, Worthley SG, Helft G, Chesebro J, et al. Effects of lipid-lowering by simvastatin on human atherosclerotic lesions: a longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation 2001;104:249–52.

    Article  PubMed  CAS  Google Scholar 

  52. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med 2006;47:1845–50.

    PubMed  CAS  Google Scholar 

  53. Arauz A, Hoyos L, Zenteno M, Mendoza R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg 2007;109:409–12.

    Article  PubMed  Google Scholar 

  54. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol 2008;15:209–17.

    Article  PubMed  Google Scholar 

  55. Bural GG, Torigian DA, Chamroonrat W, Alkhawaldeh K, Houseni M, El-Haddad G, et al. Quantitative assessment of the atherosclerotic burden of the aorta by combined FDG-PET and CT image analysis: a new concept. Nucl Med Biol 2006;33:1037–43.

    Article  PubMed  CAS  Google Scholar 

  56. Rudd JH, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 2008;49:871–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a pilot grant from the Society of Nuclear Medicine, and a T32 training grant from NIH (1-T32 CA093258A85-01A1) to W. Chen.

Conflict of Interest

There are no conflicts of interest for the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abass Alavi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Bural, G.G., Torigian, D.A. et al. Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 36, 144–151 (2009). https://doi.org/10.1007/s00259-008-0947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0947-2

Keywords

Navigation