Skip to main content
Log in

Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Respiratory motion causes uptake in positron emission tomography (PET) images of chest structures to spread out and misregister with the CT images. This misregistration can alter the attenuation correction and thus the quantisation of PET images. In this paper, we present the first clinical results for a respiratory-gated PET (RG-PET) processing method based on a single breath-hold CT (BH-CT) acquisition, which seeks to improve diagnostic accuracy via better PET-to-CT co-registration. We refer to this method as “CT-based” RG-PET processing.

Methods

Thirteen lesions were studied. Patients underwent a standard clinical PET protocol and then the CT-based protocol, which consists of a 10-min List Mode RG-PET acquisition, followed by a shallow end-expiration BH-CT. The respective performances of the CT-based and clinical PET methods were evaluated by comparing the distances between the lesions’ centroids on PET and CT images. SUVMAX and volume variations were also investigated.

Results

The CT-based method showed significantly lower (p = 0.027) centroid distances (mean change relative to the clinical method = −49%; range = −100% to 0%). This led to higher SUVMAX (mean change = +33%; range = −4% to 69%). Lesion volumes were significantly lower (p = 0.022) in CT-based PET volumes (mean change = −39%: range = −74% to −1%) compared with clinical ones.

Conclusions

A CT-based RG-PET processing method can be implemented in clinical practice with a small increase in radiation exposure. It improves PET-CT co-registration of lung lesions and should lead to more accurate attenuation correction and thus SUV measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papathanassiou D, Becker S, Amir R, Meneroux B, Liehn JC. Respiratory motion artefact in the liver dome on FDG PET/CT: comparison of attenuation correction with CT and a caesium external source. Eur J Nucl Med Mol Imaging 2005;32:1422–8.

    Article  PubMed  Google Scholar 

  2. Cohade C, Osman M, Marshall LN, Wahl RN. PET-CT: accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging 2003;30:721–6.

    PubMed  Google Scholar 

  3. Nakamoto Y, Tatsumi M, Cohade C, Osman M, Marshall LT, Wahl RL. Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 2003;30:597–602.

    PubMed  Google Scholar 

  4. Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003;44:240–3.

    PubMed  Google Scholar 

  5. Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med 2004;45:1287–92.

    PubMed  Google Scholar 

  6. Beyer T, Antoch G, Muller S, Egelhof T, Freudenberg LS, Debatin J, et al. Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 2004;45 Suppl 1:25S–35S.

    PubMed  Google Scholar 

  7. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25:2046–53.

    Article  PubMed  CAS  Google Scholar 

  8. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004;22:4357–68.

    Article  PubMed  Google Scholar 

  9. Fletcher JW, Kymes SM, Gould M, Alazraki N, Coleman RE, Lowe VJ, et al. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med 2008;49:179–85.

    Article  PubMed  Google Scholar 

  10. Goerres GW, Burger C, Kamel E, Seifert B, Kaim AH, Buck A, et al. Respiration-induced attenuation artifact at PET/CT: technical considerations. Radiology 2003;226:906–10.

    Article  PubMed  Google Scholar 

  11. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876–81.

    PubMed  Google Scholar 

  12. Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL. Optimal CT breathing protocol for combined thoracic PET/CT. AJR Am J Roentgenol 2006;187:1357–60.

    Article  PubMed  Google Scholar 

  13. Dawood M, Buther F, Lang N, Schober O, Schafers KP. Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes. Med Phys 2007;34:3067–76.

    Article  PubMed  Google Scholar 

  14. Pan T, Mawlawi O, Nehmeh SA, Erdi YE, Luo D, Liu HH, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT. J Nucl Med 2005;46:1481–7.

    PubMed  Google Scholar 

  15. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK. PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 2002;29:351–60.

    Article  PubMed  CAS  Google Scholar 

  16. Wolthaus JW, van Herk M, Muller SH, Belderbos JS, Lebesque JV, de Bois JA, et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol 2005;50:1569–83.

    Article  PubMed  CAS  Google Scholar 

  17. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179–86.

    Article  PubMed  CAS  Google Scholar 

  18. Nehmeh SA, Erdi YE, Pan T, Yorke E, Mageras GS, Rosenzweig KE, et al. Quantitation of respiratory motion during 4D-PET/CT acquisition. Med Phys 2004;31:1333–8.

    Article  PubMed  CAS  Google Scholar 

  19. Li T, Schreibmann E, Thorndyke B, Tillman G, Boyer A, Koong A, et al. Radiation dose reduction in four-dimensional computed tomography. Med Phys 2005;32:3650–60.

    Article  PubMed  CAS  Google Scholar 

  20. Rietzel E, Pan T, Chen GT. Four-dimensional computed tomography: image formation and clinical protocol. Med Phys 2005;32:874–89.

    Article  PubMed  Google Scholar 

  21. Nehmeh SA, Erdi YE, Meirelles GS, Squire O, Larson SM, Humm JL, et al. Deep-inspiration breath-hold PET/CT of the thorax. J Nucl Med 2007;48:22–6.

    PubMed  Google Scholar 

  22. Hashimoto Y, Tsujikawa T, Kondo C, Maki M, Momose M, Nagai A, et al. Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med 2006;47:426–31.

    PubMed  Google Scholar 

  23. Higashi K, Ito K, Hiramatsu Y, Ishikawa T, Sakuma T, Matsunari I, et al. 18F-FDG uptake by primary tumor as a predictor of intratumoral lymphatic vessel invasion and lymph node involvement in non-small cell lung cancer: analysis of a multicenter study. J Nucl Med 2005;46:267–73.

    PubMed  Google Scholar 

  24. Zhang ZJ, Chen JH, Meng L, Du JJ, Zhang L, Liu Y, et al. 18F-FDG uptake as a biologic factor predicting outcome in patients with resected non-small-cell lung cancer. Chin Med J (Engl) 2007;120:125–31.

    Google Scholar 

  25. Ahuja V, Coleman RE, Herndon J, Patz EF Jr. The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998;83:918–24.

    Article  PubMed  CAS  Google Scholar 

  26. Al-Sugair A, Coleman RE. Applications of PET in lung cancer. Semin Nucl Med 1998;28:303–19.

    Article  PubMed  CAS  Google Scholar 

  27. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefers HJ, et al. 18F-FDG PET for mediastinal staging of lung cancer: which SUV threshold makes sense? J Nucl Med 2007;48:1761–66.

    Article  PubMed  Google Scholar 

  28. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–5.

    PubMed  Google Scholar 

  29. Biehl KJ, Kong FM, Dehdashti F, Jin JY, Mutic S, El Naqa I, et al. 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? J Nucl Med 2006;47:1808–12.

    PubMed  Google Scholar 

  30. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.

    PubMed  Google Scholar 

  31. Daouk J, Fin L, Bailly P, Meyer M-E. Comparison of an original respiratory gated PET method, based on breath-hold CT, versus ungated PET. Eur J Nucl Med 2007;34:S145.

    Google Scholar 

  32. Hong D, Lunagomez S, Kim EE, Lee JH, Bresalier RS, Swisher SG, et al. Value of baseline positron emission tomography for predicting overall survival in patient with nonmetastatic esophageal or gastroesophageal junction carcinoma. Cancer 2005;104:1620–6.

    Article  PubMed  Google Scholar 

  33. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80:2505–9.

    Article  PubMed  CAS  Google Scholar 

  34. Daouk J, Fin L, Bailly P, Meyer M-E. AW-OSEM parameter optimization for selected events related to the breath-hold CT position in respiratory-gated PET acquisition. In: Proceedings of the Fifth IEEE International Symposium on Biomedical Imaging, Paris, France; 2008.

  35. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Budach W, et al. 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage III non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2007;34:463–71.

    Article  PubMed  Google Scholar 

  36. Nahmias C, Hanna WT, Wahl LM, Long MJ, Hubner KF, Townsend DW. Time course of early response to chemotherapy in non-small cell lung cancer patients with 18F-FDG PET/CT. J Nucl Med 2007;48:744–51.

    Article  PubMed  CAS  Google Scholar 

  37. Wade OL. Movements of the thoracic cage and diaphragm in respiration. J Physiol 1954;124:193–212.

    PubMed  CAS  Google Scholar 

  38. Meirelles GS, Erdi YE, Nehmeh SA, Squire OD, Larson SM, Humm JL, et al. Deep-inspiration breath-hold PET/CT: clinical findings with a new technique for detection and characterization of thoracic lesions. J Nucl Med 2007;48:712–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Cancéropôle Nord Ouest France. The authors thank Dr. Véronique Moullart and the Nuclear Medicine Department’s technologists for their advice on and valuable help with acquisition of the data used in the present study. We also wish to thank Dr. David Fraser (Biotech Communication, Damery, France) for his helpful advice on the English language in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Bailly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fin, L., Daouk, J., Morvan, J. et al. Initial clinical results for breath-hold CT-based processing of respiratory-gated PET acquisitions. Eur J Nucl Med Mol Imaging 35, 1971–1980 (2008). https://doi.org/10.1007/s00259-008-0858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0858-2

Keywords

Navigation