Skip to main content
Log in

Guidelines for lung scintigraphy in children

  • Guidelines
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

The purpose of this set of guidelines is to help the nuclear medicine practitioner perform a good quality lung isotope scan. The indications for the test are summarised. The different radiopharmaceuticals used for the ventilation and the perfusion studies, the technique for their administration, the dosimetry, the acquisition of the images, the processing and the display of the images are discussed in detail. The issue of whether a perfusion-only lung scan is sufficient or whether a full ventilation–perfusion study is necessary is also addressed. The document contains a comprehensive list of references and some web site addresses which may be of further assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O’Brodovich HM, Coates G. Quantitative ventilation-perfusion lung scans in infants and children: utility of submicronic radiolabelled aerosol to assess ventilation. J Paediatr 1984;105:377–83.

    Article  CAS  Google Scholar 

  2. Agnew JE, Sutton PP, Pavia D. Radioaerosol assessment of mucociliary clearance: towards definition of a normal range. Br J Radiol 1986;59:147–51.

    Article  PubMed  CAS  Google Scholar 

  3. Johnson K. Ventilation and perfusion scanning in children. Paediatr Respir Rev 2000;1(4):347–53.

    Article  PubMed  CAS  Google Scholar 

  4. Piepsz A, Gordon I, Hahn K. Paediatric nuclear medicine. Eur J Nucl Med 1991;18:41–66.

    Article  PubMed  CAS  Google Scholar 

  5. Ciofetta G, Ronchetti R, Silverman M. Regional lung function testing in children. Eur Respir J Suppl 1989 Mar;4:171S-180S.

    PubMed  CAS  Google Scholar 

  6. Gilday DL, Poulouse KP, Dore EK, et al. Accuracy of detection of pulmonary embolism by lung scanning correlated with pulmonary angiography. Am J Roentgenol 1972;115:732–8.

    CAS  Google Scholar 

  7. Falconer AR, Brown RA, Helms P, et al. Pulmonary sequelae in survivors of congenital diaphragmatic hernia. Thorax 1990;2:126–9.

    Google Scholar 

  8. Stefanutti G, Filippone M, Tommasoni N, et al. Cardiopulmonary anatomy and function in long-term survivors of mild to moderate congenital diaphragmatic hernia. J Pediatr Surg 2004;39:526–31.

    Article  PubMed  Google Scholar 

  9. Gelfand MJ, Hannon DW. Nuclear studies of the heart and great vessels. In: Miller J, Gelfand MJ, editors. Pediatric nuclear imaging. Philadelphia: WB Saunders; 1994. p 83–101.

    Google Scholar 

  10. Pruckmayer M, Zacheri S, Salzer-Muhar U, et al. Scintigraphic assessment of pulmonary and whole-body blood flow patterns after surgical intervention in congenital heart disease. J Nucl Med 1999;40:1477–83.

    PubMed  CAS  Google Scholar 

  11. Kim JH, Lee DS, Chung JK, et al. Quantitative lung perfusion scintigraphy in postoperative evaluation of congenital right ventricular outflow tract obstructive lesions. Clin Nucl Med 1966;21:471–6.

    Article  Google Scholar 

  12. Lu G, Shih WJ, Chou C. 99mTc-MAA total-body imaging to detect intrapulmonary right to left shunts and to evaluate the therapeutic effect in pulmonary arteriovenous shunts. Clin Nucl Med 1996;21:197–202.

    Article  PubMed  CAS  Google Scholar 

  13. Piepsz A. Late sequelae of foreign body inhalation; a multicentric scintigraphic study. Eur J Nucl Med 1988;13:578–81.

    Article  PubMed  CAS  Google Scholar 

  14. Stanchino ML, Tantisira KG, Aquino SL, et al. Association of lung perfusion disparity and mortality in patients with cystic fibrosis awaiting lung transplantation. J Heart Lung Transplant 2002;21(2):217–25.

    Article  Google Scholar 

  15. Itti E, Fauroux B, Pigeot J, et al. Quantitative lung perfusion scan as a predictor of aerosol distribution heterogeneity and disease severity in children with cystic fibrosis. Nucl Med Commun 2004;25(6):563–9.

    Article  PubMed  Google Scholar 

  16. Piepsz A, Decostre P, Baran D. Scintigraphic study of pulmonary blood flow distribution in cystic fibrosis. J Nucl Med 1973;14:326–30.

    PubMed  CAS  Google Scholar 

  17. Samanek M, Houstek J, Vavrova V. Distribution of pulmonary blood flow in children with cystic fibrosis. Acta Paediatr Scand 1971;60:149–57.

    PubMed  CAS  Google Scholar 

  18. Piepsz A, Wetzburger C, Spehl M, et al. Critical evaluation of lung scintigraphy in cystic fibrosis: study of 113 patients. J Nucl Med 1980;21:909–13.

    PubMed  CAS  Google Scholar 

  19. Vandervivere J, Sphel M, Dab I et al: Brochiectasis in childhood. Comparison of chest roentgenograms, bronchography and lung scintigraphy. Pediatr Radiol 1980;9(4):193–8.

    Article  Google Scholar 

  20. Eastman KM, Fall AJ, Mitchell L, Spencer DA. The need to redefine non cystic fibrosis bronchiectasis in childhood. Thorax 2004;59(4):324–7.

    Article  Google Scholar 

  21. Ciofetta G, Fatone R, Caresta D, et al. Recurrent bronchitis in childhood: the case for scintigraphic investigation. Eur J Nucl Med 1985;11:172.

    Google Scholar 

  22. Ciofetta G. Lung scintigraphy in the assessment of recurrent bronchitis and pneumonia in children. Q J Nucl Med 1997;41:292–301.

    PubMed  CAS  Google Scholar 

  23. Hardoff R, Rivlin J, Front A. The contribution of perfusion scintigraphy in the evaluation of children suffering from recurrent localized pneumonia. Eur J Nucl Med 1990;17:152–5.

    Article  PubMed  CAS  Google Scholar 

  24. Alderson PO, Chen DC, Fleishman MJ, et al. Radioaerosol scintigraphy in infants and children born to mothers with HIV disease. Pediatric pulmonary and cardiovascular complications (of vertically transmitted human immunodeficiency virus) study group. Radiology 1999;210(3):815–822.

    PubMed  CAS  Google Scholar 

  25. Lerondel S, Vecellio None L, Faure L, et al. Gene therapy for cystic fibrosis with aerosolized adenovirus-CFTR: characterization of the aerosol and scintigraphic determination of lung deposition in baboons. J Aerosol Med 2001;14(1):95–105.

    Article  PubMed  CAS  Google Scholar 

  26. Dubus JC, Vecellio L, De Monte M, et al. Aerosol deposition in neonatal ventilation. Pediatr Res 2005;58(1):10–4.

    Article  PubMed  Google Scholar 

  27. Regnis JAM, Robinson DL, Bailey P, et al. Mucociliary clearance in patients with cystic fibrosis and in normal subjects. Am J Respir Crit Care Med 1994;150:66–71.

    PubMed  CAS  Google Scholar 

  28. de Azambuja E, Fleck JF, Barreto SS, et al. Pulmonary epithelial permeability in patients treated with bleomycin containing chemotherapy detected by technetium-99m diethylene triamine penta-acetic acid aerosol (99mTc-DTPA) scintigraphy. Ann Nucl Med 2005;19(2):131–5.

    PubMed  Google Scholar 

  29. Ljung B. The child in diagnostic nuclear medicine. Eur J Nucl Med 1997;24:683–90.

    PubMed  CAS  Google Scholar 

  30. Pielter P, Bardies M, Chetanneau A, et al. Comparison of technetium-99m and phytate aerosol in ventilation studies. Eur J Nucl Med 1992;19:349–54.

    Google Scholar 

  31. Cabahug CJ, McPeck M, Palmer LB, et al. Utility of technetium-99m-DTPA in determining regional ventilation. J Nucl Med 1996;37:239–44.

    PubMed  CAS  Google Scholar 

  32. Jackson P, Mackey D, van der Wall H. Physical and chemical nature of Technegas. J Nucl Med. 1998;39(9):1646–9.

    PubMed  CAS  Google Scholar 

  33. Fazio F, Jones T. Assessment of regional ventilation by continuous inhalation of radioactive krypton-81m. Br Med J 1975;3:673–6.

    Article  PubMed  CAS  Google Scholar 

  34. Ciofetta G, Silverman M, Hughes JMB. Quantitative approach to the study of regional lung function in children using krypton-81m. Br J Radiol 1980;53:950–9.

    PubMed  CAS  Google Scholar 

  35. Ham HR, Vandevivere J, Dab I, et al. Limitations of steady state krypton-81m ventilation study in children. Nucl Med Commun 1981;2:43–8.

    Google Scholar 

  36. Kaneko K, Milic-Emili J, Dolovich MB, et al. Regional distribution of ventilation and perfusion as a function of body position. J Appl Physiol 1966;21:767–77.

    PubMed  CAS  Google Scholar 

  37. Inselman LS, Mellins RB. Growth and development of the lung. J Pediatr 1981;98:1–15.

    Article  PubMed  CAS  Google Scholar 

  38. Grimon G, Andre L, Bernard O, et al. Detection of intrapulmonary shunts in children with liver disease. J Nucl Med 1994;35:1328–32.

    PubMed  CAS  Google Scholar 

  39. Del Torso S, Kelly MJ, Kalff V, et al. Non-invasive assessment of pulmonary blood supply after staged repair of pulmonary atresia. Br Heart J 1985;54:209–14.

    PubMed  Google Scholar 

  40. Boothroyd AE, McDonald EA, Carthy H. Lung perfusion scintigraphy in patients with congenital heart disease: sensitivity and important pitfalls. Nucl Med Commun 1996;17:33–9.

    Article  PubMed  CAS  Google Scholar 

  41. Kreutzer C, Mayorquim RC, Kreutzer GO, et al. Experience with one and half ventricle repair. J Thorac Cardiovasc Surg 1999;117:662–8.

    Article  PubMed  CAS  Google Scholar 

  42. Amirav I, Balanov I, Goremberg M et al. Nebuliser hood compared to mask in wheezy infants: aerosol therapy without tears! Arch Dis Childhood 2003;88:719–23.

    Article  CAS  Google Scholar 

  43. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 1978;93:62–6.

    Article  PubMed  CAS  Google Scholar 

  44. Piepsz A, Hahn K, Roca I, et al. A radiopharmaceutical schedule for imaging in paediatrics. Paediatric Task Group of the European Association of Nuclear Medicine. Eur J Nucl Med 1990;17:127–9.

    Article  PubMed  CAS  Google Scholar 

  45. Nelson NM, Prod’hom LS, Cherry RB, et al. Pulmonary function in the newborn infant II. Perfusion estimation by analysis of the arterial-alveolar CO2 differences. Pediatrics 1962;30:975.

    PubMed  CAS  Google Scholar 

  46. Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 1998;42:93–112.

    PubMed  CAS  Google Scholar 

  47. Thomas SR. MIRD pamphlet no 18; administered cumulated activity for ventilation studies. J Nucl Med 2001;42(3):520–6.

    PubMed  CAS  Google Scholar 

  48. Stabin MG. Pediatric nuclear medicine. In: Treves ST, editor. New York: Springer, chapter 26; 1994.

    Google Scholar 

  49. Annals of the ICRP, 1998; 80(28/3):31–3.

  50. Semih Dogan A, Rezai K, Kirchner PT, et al. A scintigraphic sign for detection of right-to-left shunts. J Nucl Med 1993;34(9):1607–11.

    Google Scholar 

  51. Sugyiama M, Sakahara H, Igarashi T, et al. Scintigraphic evaluation of small pulmonary right-to-left shunt and therapeutic effect in pulmonary arteriovenous malformation. Clin Nucl Med 2001;26:757–60.

    Article  Google Scholar 

  52. Morrell NW, Roberts CM, Jones BE, et al. The anatomy of radioisotope lung scanning. J Nucl Med 1992;33(5):676–83.

    Google Scholar 

  53. Magnussen JS, Chicco P, Palmer AW, et al. Optimisation of the scintigraphic segmental anatomy of the lungs. J Nucl Med 1997;38:1987–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Biassoni.

Additional information

More information about Technegas may be found on the website http://www.dupharma.dk/prod08.htm

More information about 99mTc-labelled aerosols may be found on the website http://www.healthlinemed.com

Under the Auspices of the Paediatric Committee of the European Association of Nuclear Medicine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciofetta, G., Piepsz, A., Roca, I. et al. Guidelines for lung scintigraphy in children. Eur J Nucl Med Mol Imaging 34, 1518–1526 (2007). https://doi.org/10.1007/s00259-007-0485-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0485-3

Keywords

Navigation