Skip to main content
Log in

Abstract

Introduction

Balance of the autonomic nervous system is essential for adequate cardiac performance, and alterations seem to play a key role in the development and progression of various cardiac diseases.

PET as an imaging tool

PET imaging of the cardiac autonomic nervous system has advanced extensively in recent years, and multiple pre- and postsynaptic tracers have been introduced. The high spatial and temporal resolution of PET enables noninvasive quantification of neurophysiologic processes at the tissue level. Ligands for catecholamine receptors, along with radiolabeled catecholamines and catecholamine analogs, have been applied to determine involvement of sympathetic dysinnervation at different stages of heart diseases such as ischemia, heart failure, and arrhythmia.

Review

This review summarizes the recent findings in neurocardiological PET imaging. Experimental studies with several radioligands and clinical findings in cardiac dysautonomias are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Port JD, Bristow MR. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol 2001;33(5):887–905.

    Article  PubMed  CAS  Google Scholar 

  2. Elsinga PH, van Waarde A, Vaalburg W. Receptor imaging in the thorax with PET. Eur J Pharmacol 2004;499(1–2):1–13.

    Article  PubMed  CAS  Google Scholar 

  3. Francis GS. Modulation of peripheral sympathetic nerve transmission. J Am Coll Cardiol 1988;12(1):250–4.

    Article  PubMed  CAS  Google Scholar 

  4. Tobes MC, Jaques S Jr, Wieland DM, Sisson JC. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med 1985;26(8):897–907.

    PubMed  CAS  Google Scholar 

  5. Melon PG, Nguyen N, DeGrado TR, et al. Imaging of cardiac neuronal function after cocaine exposure using carbon-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1994;23(7):1693–9.

    Article  PubMed  CAS  Google Scholar 

  6. Russ H, Gliese M, Sonna J, Schomig E. The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+). Naunyn Schmiedebergs Arch Pharmacol 1992;346(2):158–65.

    Article  PubMed  CAS  Google Scholar 

  7. Salt PJ. Inhibition of noradrenaline uptake 2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol 1972;20(3):329–40.

    Article  PubMed  CAS  Google Scholar 

  8. Langer O, Halldin C. PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 2002;29(3):416–34.

    Article  PubMed  CAS  Google Scholar 

  9. Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 1990;82(2):457–64.

    PubMed  CAS  Google Scholar 

  10. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34(8):1287–93.

    PubMed  CAS  Google Scholar 

  11. Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991;87(5):1681–90.

    Article  PubMed  CAS  Google Scholar 

  12. Raffel DM, Chen W, Sherman PS, Gildersleeve DL, Jung YW. Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med 2006;47(9):1490–6.

    PubMed  CAS  Google Scholar 

  13. Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 1997;38(5):780–5.

    PubMed  CAS  Google Scholar 

  14. Munch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with [11C]epinephrine and [11C]hydroxyephedrine and positron emission tomography. Circulation 2000;101(5):516–23.

    PubMed  CAS  Google Scholar 

  15. Raffel DM, Wieland DM. Influence of vesicular storage and monoamine oxidase activity on [11C]phenylephrine kinetics: studies in isolated rat heart. J Nucl Med 1999;40(2):323–30.

    PubMed  CAS  Google Scholar 

  16. Raffel DM, Corbett JR, del Rosario RB, et al. Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 1996;37(12):1923–31.

    PubMed  CAS  Google Scholar 

  17. Raffel DM, Corbett JR, del Rosario RB, et al. Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med 1999;40(2):232–8.

    PubMed  CAS  Google Scholar 

  18. Tipre DN, Goldstein DS. Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med 2005;46(11):1775–81.

    PubMed  CAS  Google Scholar 

  19. Goldstein DS, Robertson D, Esler M, Straus SE, Eisenhofer G. Dysautonomias: clinical disorders of the autonomic nervous system. Ann Intern Med 2002;137(9):753–63.

    PubMed  Google Scholar 

  20. Goldstein DS, Holmes C, Cannon RO, III, Eisenhofer G, Kopin IJ. Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 1997;336(10):696–702.

    Article  PubMed  CAS  Google Scholar 

  21. Goldstein DS, Eisenhofer G, Dunn BB, et al. Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 1993;22(7):1961–71.

    Article  PubMed  CAS  Google Scholar 

  22. Goldstein DS, Chang PC, Eisenhofer G, et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation 1990;81(5):1606–21.

    PubMed  CAS  Google Scholar 

  23. Bengel FM, Schwaiger M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 2004;11(5):603–16.

    Article  PubMed  Google Scholar 

  24. Law MP. Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol 1993;109(4):1101–9.

    PubMed  CAS  Google Scholar 

  25. Delforge J, Mesangeau D, Dolle F, et al. In vivo quantification and parametric images of the cardiac beta-adrenergic receptor density. J Nucl Med 2002;43(2):215–26.

    PubMed  CAS  Google Scholar 

  26. van Waarde A, Elsinga PH, Doze P, et al. A novel beta-adrenoceptor ligand for positron emission tomography: evaluation in experimental animals. Eur J Pharmacol 1998;343(2–3):289–96.

    Article  PubMed  Google Scholar 

  27. Elsinga PH, van Waarde A, Jaeggi KA, et al. Synthesis and evaluation of (S)-4-(3-(2′-[11C]isopropylamino)-2-hydroxypropoxy) -2H-benzimidazol -2-one ((S)-[11C]CGP 12388) and (S)-4-(3-((1′-[18F]-fluoroisopropyl)amino)-2-hydroxypropoxy) -2H- benzimidazol-2-one ((S)-[18F]fluoro-CGP 12388) for visualization of beta-adrenoceptors with positron emission tomography. J Med Chem 1997;40(23):3829–35.

    Article  PubMed  CAS  Google Scholar 

  28. Elsinga PH, Doze P, van Waarde A, et al. Imaging of beta-adrenoceptors in the human thorax using (S)-[11C]CGP12388 and positron emission tomography. Eur J Pharmacol 2001;433(2–3):173–6.

    Article  PubMed  CAS  Google Scholar 

  29. Momose M, Reder S, Raffel DM, et al. Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 2004;45(3):471–7.

    PubMed  CAS  Google Scholar 

  30. Doze P, Elsinga PH, van Waarde A, et al. Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 2002;29(3):295–304.

    Article  PubMed  CAS  Google Scholar 

  31. Law MP, Osman S, Pike VW, et al. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 2000;27(1):7–17.

    Article  PubMed  CAS  Google Scholar 

  32. DeGrado TR, Mulholland GK, Wieland DM, Schwaiger M. Evaluation of (−)[18F]fluoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 1994;21(2):189–95.

    Article  PubMed  CAS  Google Scholar 

  33. Syrota A, Comar D, Paillotin G, et al. Muscarinic cholinergic receptor in the human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci USA 1985; 82(2):584–8.

    Article  PubMed  CAS  Google Scholar 

  34. Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2-deoxy-2-[18F]fluoro-D-glucose- A85380-PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol 2006;95(2):105–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kao AC, Van TP, III, Shaeffer-McCall GS, et al. Central and peripheral limitations to upright exercise in untrained cardiac transplant recipients. Circulation 1994;89(6):2605–15.

    PubMed  CAS  Google Scholar 

  36. Kao AC, Van TP, III, Shaeffer-McCall GS, et al. Allograft diastolic dysfunction and chronotropic incompetence limit cardiac output response to exercise two to six years after heart transplantation. J Heart Lung Transplant 1995;14(1 Pt 1):11–22.

    PubMed  CAS  Google Scholar 

  37. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336(17):1208–15.

    Article  PubMed  Google Scholar 

  38. Wilson RF, Christensen BV, Olivari MT, et al. Evidence for structural sympathetic reinnervation after orthotopic cardiac transplantation in humans. Circulation 1991;83(4):1210–20.

    PubMed  CAS  Google Scholar 

  39. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999;99(14):1866–71.

    PubMed  CAS  Google Scholar 

  40. Bengel FM, Ueberfuhr P, Hesse T, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002;106(7):831–5.

    Article  PubMed  Google Scholar 

  41. Bengel FM, Ueberfuhr P, Schiepel N, et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001;345(10):731–8.

    Article  PubMed  CAS  Google Scholar 

  42. Bengel FM, Ueberfuhr P, Karja J, et al. Sympathetic reinnervation, exercise performance and effects of beta-adrenergic blockade in cardiac transplant recipients. Eur Heart J 2004;25(19):1726–33.

    Article  PubMed  CAS  Google Scholar 

  43. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 2000;27(11):1650–7.

    Article  PubMed  CAS  Google Scholar 

  44. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26(5):1553–79.

    Article  PubMed  Google Scholar 

  45. Allman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993;22(5):1425–32.

    Article  PubMed  CAS  Google Scholar 

  46. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998;98(10):961–8.

    PubMed  CAS  Google Scholar 

  47. Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48(3):603–8.

    Article  PubMed  CAS  Google Scholar 

  48. Rimoldi OE, Drake-Holland AJ, Noble MI, Camici PG. Basal and hyperaemic myocardial blood flow in regionally denervated canine hearts: an in vivo study with positron emission tomography. Eur J Nucl Med Mol Imaging 2007;34(2):197–205.

    Article  PubMed  Google Scholar 

  49. Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998;31(7):1575–84.

    Article  PubMed  CAS  Google Scholar 

  50. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100(8):813–9.

    PubMed  Google Scholar 

  51. Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 2004;44(12):2368–74.

    Article  PubMed  CAS  Google Scholar 

  52. Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism 1999;48(1):92–101.

    Article  PubMed  CAS  Google Scholar 

  53. Bengel FM, Ueberfuhr P, Schafer D, et al. Effect of diabetes mellitus on sympathetic neuronal regeneration studied in the model of transplant reinnervation. J Nucl Med 2006;47(9):1413–9.

    PubMed  Google Scholar 

  54. Chen PS, Chen LS, Cao JM, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 2001;50(2):409–16.

    Article  PubMed  CAS  Google Scholar 

  55. Spyrou N, Rosen SD, Fath-Ordoubadi F, et al. Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol 2002;40(7):1216–24.

    Article  PubMed  CAS  Google Scholar 

  56. Schwaiger M, Guibourg H, Rosenspire K, et al. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol. J Nucl Med 1990;31(8):1352–7.

    PubMed  CAS  Google Scholar 

  57. Luisi AJ, Jr., Suzuki G, Dekemp R, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med 2005;46(8):1368–74.

    PubMed  CAS  Google Scholar 

  58. Bulow HP, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun 2003;24(3):233–9.

    Article  PubMed  CAS  Google Scholar 

  59. Allman KC, Wieland DM, Muzik O, et al. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22(2):368–75.

    Article  PubMed  CAS  Google Scholar 

  60. Fallen EL, Coates G, Nahmias C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 1999; 137(5):863–9.

    Article  PubMed  CAS  Google Scholar 

  61. Fricke E, Fricke H, Eckert S, et al. Myocardial sympathetic innervation in patients with chronic coronary artery disease: is reduction in coronary flow reserve correlated with sympathetic denervation? Eur J Nucl Med Mol Imaging 2007;34(2):206–11.

    Article  PubMed  Google Scholar 

  62. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87(4):1169–78.

    PubMed  CAS  Google Scholar 

  63. Choudhury L, Rosen SD, Lefroy DC, et al. Myocardial beta adrenoceptor density in primary and secondary left ventricular hypertrophy. Eur Heart J 1996;17(11):1703–9.

    PubMed  CAS  Google Scholar 

  64. Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82(1):57–62.

    PubMed  CAS  Google Scholar 

  65. de Jong RM, Willemsen AT, Slart RH, et al. Myocardial beta-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging 2005;32(4):443–7.

    Article  PubMed  CAS  Google Scholar 

  66. Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol 1999;84(5):568–74.

    Article  PubMed  CAS  Google Scholar 

  67. Hartmann F, Ziegler S, Nekolla S, et al. Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart 1999;81(3):262–70.

    PubMed  CAS  Google Scholar 

  68. Ungerer M, Hartmann F, Karoglan M, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97(2):174–80.

    PubMed  CAS  Google Scholar 

  69. Pietila M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28(3):373–6.

    Article  PubMed  CAS  Google Scholar 

  70. Pietila M, Malminiemi K, Vesalainen R, et al. Exercise training in chronic heart failure: beneficial effects on cardiac 11C-hydroxyephedrine PET, autonomic nervous control, and ventricular repolarization. J Nucl Med 2002;43(6):773–9.

    PubMed  Google Scholar 

  71. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J 2001;22(17):1594–600.

    Article  PubMed  CAS  Google Scholar 

  72. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Alterations of the sympathetic nervous system and metabolic performance of the cardiomyopathic heart. Eur J Nucl Med Mol Imaging 2002;29(2):198–202.

    Article  PubMed  CAS  Google Scholar 

  73. Matsuo K, Kurita T, Inagaki M, et al. The circadian pattern of the development of ventricular fibrillation in patients with Brugada syndrome. Eur Heart J 1999;20(6):465–70.

    Article  PubMed  CAS  Google Scholar 

  74. Kies P, Wichter T, Schafers M, et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation 2004;110(19):3017–22.

    Article  PubMed  CAS  Google Scholar 

  75. Wichter T, Schafers M, Rhodes CG, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101(13):1552–8.

    PubMed  CAS  Google Scholar 

  76. Schafers M, Lerch H, Wichter T, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1998;32(1):181–6.

    Article  PubMed  CAS  Google Scholar 

  77. Mazzadi AN, Andre-Fouet X, Duisit J, et al. Cardiac retention of [11C]HED in genotyped long QT patients: a potential amplifier role for severity of the disease. Am J Physiol Heart Circ Physiol 2003;285(3):H1286–93.

    PubMed  CAS  Google Scholar 

  78. Calkins H, Lehmann MH, Allman K, Wieland D, Schwaiger M. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation 1993;87(5):1616–21.

    PubMed  CAS  Google Scholar 

  79. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56(1):33–9.

    Article  PubMed  CAS  Google Scholar 

  80. Goldstein DS. Cardiovascular aspects of Parkinson disease. J Neural Transm Suppl 2006;(70):339–42.

  81. Goldstein DS. Cardiac sympathetic neuroimaging to distinguish multiple system atrophy from Parkinson disease. Clin Auton Res 2001;11(6):341–2.

    Article  PubMed  CAS  Google Scholar 

  82. Berding G, Schrader CH, Peschel T, et al. [N-methyl 11C]meta-Hydroxyephedrine positron emission tomography in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2003;30(1):127–31.

    Article  PubMed  CAS  Google Scholar 

  83. Goldstein DS, Holmes C, Li ST, et al. Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 2000;133(5):338–47.

    PubMed  CAS  Google Scholar 

  84. Sharabi Y, Eldadah B, Li ST, et al. Neuropharmacologic distinction of neurogenic orthostatic hypotension syndromes. Clin Neuropharmacol 2006;29(3):97–105.

    Article  PubMed  Google Scholar 

  85. Raffel DM, Koeppe RA, Little R, et al. PET measurement of cardiac and nigrostriatal denervation in parkinsonian syndromes. J Nucl Med 2006; 47(11):1769–77.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Lautamäki is supported by a grant from the Finnish Medical Foundation, and by a Bracco/SNM Research Fellowship in Cardiovascular Molecular Imaging kindly provided by the Cardiovascular and Radiopharmaceutical Sciences Councils, the Society of Nuclear Medicine, and Bracco. Images shown in Figs. 13 were obtained during the tenure of Dr. Bengel at the Technical University of Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Bengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lautamäki, R., Tipre, D. & Bengel, F.M. Cardiac sympathetic neuronal imaging using PET. Eur J Nucl Med Mol Imaging 34 (Suppl 1), 74–85 (2007). https://doi.org/10.1007/s00259-007-0442-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0442-1

Keywords

Navigation