Skip to main content

Advertisement

Log in

Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

A novel statistical method, namely Regression-Estimated Input Function (REIF), is proposed in this study for the purpose of non-invasive estimation of the input function for fluorine-18 2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) quantitative analysis. We collected 44 patients who had undergone a blood sampling procedure during their FDG-PET scans. First, we generated tissue time-activity curves of the grey matter and the whole brain with a segmentation technique for every subject. Summations of different intervals of these two curves were used as a feature vector, which also included the net injection dose. Multiple linear regression analysis was then applied to find the correlation between the input function and the feature vector. After a simulation study with in vivo data, the data of 29 patients were applied to calculate the regression coefficients, which were then used to estimate the input functions of the other 15 subjects. Comparing the estimated input functions with the corresponding real input functions, the averaged error percentages of the area under the curve and the cerebral metabolic rate of glucose (CMRGlc) were 12.13±8.85 and 16.60±9.61, respectively. Regression analysis of the CMRGlc values derived from the real and estimated input functions revealed a high correlation (r=0.91). No significant difference was found between the real CMRGlc and that derived from our regression-estimated input function (Student’s t test, P>0.05). The proposed REIF method demonstrated good abilities for input function and CMRGlc estimation, and represents a reliable replacement for the blood sampling procedures in FDG-PET quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Kakurada D, Shinohara M. The [14C] deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 1977; 28:897–916.

    CAS  PubMed  Google Scholar 

  2. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 1979; 6:371–388.

    CAS  PubMed  Google Scholar 

  3. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin C, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 1980; 238:E69–E82.

    CAS  PubMed  Google Scholar 

  4. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin C, Kuhl DE. Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metabol 1981; 1:391–401.

    CAS  Google Scholar 

  5. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, Margouleff D, Eidelberg D. Non-invasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 1993; 188:131–136.

    CAS  PubMed  Google Scholar 

  6. Phillips RL, Chen CY, Wong DF, London ED. An improved method to calculate cerebral metabolic rates of glucose using PET. J Nucl Med 1995; 36:1668–1679.

    CAS  PubMed  Google Scholar 

  7. Wakita K, Imahori Y, Ido T, Fujii R, Horii H, Shimizu M, Nakajima S, Mineura K, Nakamura T, Kanatsuna T. Simplification for measuring input function of FDG PET: investigation of 1-point blood sampling method. J Nucl Med 2000; 41:1484–1490.

    CAS  PubMed  Google Scholar 

  8. Tsuchida T, Sadato N, Yonekura Y, Nakamura S, Takahashi N, Sugimoto K, Waki A, Yamamoto K, Hayashi N, Ishii Y. Noninvasive measurement of cerebral metabolic rate of glucose using standardized input function. J Nucl Med 1999; 40:1441–1445.

    CAS  PubMed  Google Scholar 

  9. Shiozaki T, Sadato N, Senda M, Ishii K, Tsuchida T, Yonekura Y, Fukuda H, Konishi J. Noninvasive estimation of FDG input function for quantification of cerebral metabolic rate of glucose: optimization and multicenter evaluation. J Nucl Med 2000; 41:1612–1618.

    CAS  PubMed  Google Scholar 

  10. Feng D, Wong KP, Wu CM, Siu WC. A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: theory and simulation study. IEEE Trans Inform Technol Biomed 1997; 1:243–254.

    Article  CAS  Google Scholar 

  11. Wong KP, Feng D, Meikle SR, Fulham MJ. Simultaneous estimation of physiological parameter and the input function—in vivo PET data. IEEE Trans Inform Technol Biomed 2001; 5:67–76.

    Article  CAS  Google Scholar 

  12. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, Yun LS, Palant A. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography,18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 1998; 18:716–723.

    Article  CAS  PubMed  Google Scholar 

  13. van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input function for determination of MRGlu in cardiac18F-FDG PET scans. J Nucl Med 2001; 42:1622–1629.

    PubMed  Google Scholar 

  14. Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, Seo K, Park KS, Chung JK, Lee MC. Blind separation of cardiac components and extraction of input function from H2 15O dynamic myocardial PET using independent component analysis. J Nucl Med 2001; 42:938–943.

    CAS  PubMed  Google Scholar 

  15. Wu LC, Feng DG, Wang JK, Lin HM, Chou KL, Liu RS, Yeh SH. Quantitative analysis of FDG PET images. Ann Nucl Med 1998; 11:29–33.

    Google Scholar 

  16. Kovacevic N, Lobaugh NJ, Bronskill MJ, Levine B, Feinstein A, Black SE. A robust method for extraction and automatic segmentation of brain images. NeuroImage 2002; 17:1087–1100.

    Article  CAS  PubMed  Google Scholar 

  17. Feng D, Huang SC, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 1993; 32:95–110.

    CAS  PubMed  Google Scholar 

  18. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood to brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3:1–7.

    CAS  PubMed  Google Scholar 

  19. Patlak CS, Blasberg RG. Graphical evaluation of blood to brain transfer constants from multiple-time uptake data: generalizations. J Cereb Blood Flow Metab 1985; 5:584–590.

    CAS  PubMed  Google Scholar 

  20. Feng D, Ho D, Chen K, Wu LC, Wang JK, Liu RS, Yeh SH. An evaluation of the algorithms for determining local cerebral metabolic rates of glucose using positron emission tomography dynamic data. IEEE Trans Med Imag 1995; 14:697–710.

    Article  Google Scholar 

  21. Meguro K, Yamaguchi S, Itoh M, Fujiwara T, Yamadori A. Striatal dopamine metabolism correlated with frontotemporal glucose utilization in Alzheimer’s disease: a double-tracer PET study. Neurology 1997; 49:941–945.

    CAS  PubMed  Google Scholar 

  22. O’Brien TJ, Hicks RJ, Ware R, Binns DS, Murphy M, Cook MJ. The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J Nucl Med 2001; 42:1158–1165.

    CAS  PubMed  Google Scholar 

  23. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, Yonekura Y. FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging 2003; 30:63–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grant NSC91-2213-E-075-002 from the National Science Council of Taiwan, R.O.C. The authors would also like to thank Dr. Toshiki Shiozaki in the Department of Nuclear Medicine and Diagnostic Imaging, Kyoto University, Japan for providing us with the SIF data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Chih Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, YH., Kao, T., Liu, RS. et al. Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Eur J Nucl Med Mol Imaging 31, 692–702 (2004). https://doi.org/10.1007/s00259-003-1412-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1412-x

Keywords

Navigation