Skip to main content

Advertisement

Log in

PET/CT: a new imaging technology in nuclear medicine

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

This review discusses the technical background of combined PET and CT and considers the clinical applications of PET/CT imaging. Questions addressed include: Is PET/CT superior to PET imaging alone? If so, in which patient populations and in what respect? Can PET/CT imaging affect patient management? Can PET/CT be practiced economically? While much work remains to be done, the available data clearly suggest that PET/CT decreases imaging time per patient and, even for the experienced reader, significantly reduces the number of equivocal PET interpretations. PET/CT also has the ability to improve accuracy of PET image interpretation and to affect clinical decision making, thereby improving patient management. The nuclear medicine community should approach this new technology with an open mind and focus on its clinical usefulness. The decision regarding whether PET/CT should be part of the equipment in a given nuclear medicine or radiology practice largely depends on the specific patient population. It is concluded that present skepticism concerning combined PET/CT will subside once critics of this new modality have had the opportunity to clearly see on images its many advantages compared with either PET alone or conventional image fusion approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A–F.
Fig. 3A–C.
Fig. 4A–D.
Fig. 5A–E.
Fig. 6A–D.
Fig. 7A–C.
Fig. 8A–C.
Fig. 9A, B.
Fig. 10A–C.
Fig. 11A–D.

Similar content being viewed by others

References

  1. Phelps M. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci U S A 2000; 97:9226–9233.

    CAS  PubMed  Google Scholar 

  2. Phelps ME. Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine. Semin Nucl Med 1981; 11:32–49.

    CAS  PubMed  Google Scholar 

  3. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989; 30:359–366.

    CAS  PubMed  Google Scholar 

  4. Choi Y, Hawkins RA, Huang SC, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991; 32:733–738.

    CAS  PubMed  Google Scholar 

  5. Nehmeh SA, Erdi YE, Ling CC, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002; 43:876–881.

    Google Scholar 

  6. Hattori N, Bengel FM, Mehilli J, et al. Global and regional functional measurements with gated FDG PET in comparison with left ventriculography. Eur J Nucl Med 2001; 28:221–229.

    Google Scholar 

  7. Melcher CL. Scintillation crystals for PET. J Nucl Med 2000; 41:1051–1055.

    CAS  PubMed  Google Scholar 

  8. Cherry S, Phelps M. Positron emission tomography: methods and instrumentation. In: Sandler M, Coleman RE, Patton J, Wackers F, Gottschalk A, eds. Diagnostic nuclear medicine. Philadelphia: Lippincott Williams and Wilkins; 2003:61–83.

  9. Fahey FH. Positron emission tomography instrumentation. Radiol Clin North Am 2001; 39:919–929.

    CAS  PubMed  Google Scholar 

  10. Votaw JR, White M. Comparison of 2-dimensional and 3-dimensional cardiac82Rb PET studies. J Nucl Med 2001; 42:701–706.

    CAS  PubMed  Google Scholar 

  11. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002; 29:922–927.

    Article  CAS  PubMed  Google Scholar 

  12. Nakamoto Y, Osman M, Cohade C, et al. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med 2002; 43:1137–1143.

    Google Scholar 

  13. Visvikis D, Cheze-LeRest C, Costa DC, Bomanji J, Gacinovic S, Ell PJ. Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for [18F]FDG PET. Eur J Nucl Med 2001; 28:1326–1335.

    CAS  PubMed  Google Scholar 

  14. Schoder H, Erdi Y, Chao K, Larson S, Yeung H. Clinical implications of the use of two image reconstruction algorithms for PET in cancer patients [abstract]. J Nucl Med 2002; 43:156p.

    Google Scholar 

  15. Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol 2002; 75 Spec No:S24–S30.

    Google Scholar 

  16. Kluetz PG, Meltzer CC, Villemagne VL, et al. Combined PET/CT imaging in oncology. Impact on patient management. Clin Positron Imaging 2000; 3:223–230.

    PubMed  Google Scholar 

  17. Yeung H, Schoder H, Larson S. Utility of PET/CT for assessing equivocal PET lesions in oncology—initial experience [abstract]. J Nucl Med 2002; 43:32P.

    Google Scholar 

  18. Keidar Z, Bar-Shalom R, Guralnik L, et al. Hybrid imaging using PET/CT with18F-FDG in suspected recurrence of lung cancer: diagnostic value and impact on patient management. J Nucl Med 2002; 43:32P.

    Google Scholar 

  19. Picchio M, Landoni C, Messa C, Del Maschio A, Sironi S, Fazio F. CT-PET in patients with increasing tumor markers [abstract]. Radiology 2002; 225:659.

    Google Scholar 

  20. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat ("USA-Fat"): description on18F-FDG PET/CT. J Nucl Med 2003; 44:170–176.

    CAS  PubMed  Google Scholar 

  21. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 2002; 29:1393–1398.

    Article  PubMed  Google Scholar 

  22. Nakamoto Y, Cohade C, Osman M, Marshall L, Fishman E, Wahl R. Normal FDG distribution in head and neck region: PET/CT evaluation [abstract]. Radiology 2002; 225 (p):333.

    Google Scholar 

  23. Yeung H, Grewal R, Gonen M, Schöder H, Larson SM. Patterns of FDG uptake in adipose tissue and muscle: a potential source of false positives for positron emission tomography. J Nucl Med 2003 (in press).

  24. Tatlidil R, Jadvar H, Bading JR, Conti PS. Incidental colonic fluorodeoxyglucose uptake: correlation with colonoscopic and histopathologic findings. Radiology 2002; 224:783–787.

    PubMed  Google Scholar 

  25. Schöder H, Yeung H, Larson S. Incremental diagnostic value of PET/CT fusion imaging in patients with head and neck malignancies [abstract]. Radiology 2002; 225 (p):333.

    Google Scholar 

  26. Schöder H, Yeung H, Larson SM. Utility of PET/CT in patients with abdominal and pelvic malignancies [abstract]. Radiology 2002; 225 (p):659.

    Google Scholar 

  27. Hannah A, Scott AM, Tochon-Danguy H, et al. Evaluation of18F-fluorodeoxyglucose positron emission tomography and computed tomography with histopathologic correlation in the initial staging of head and neck cancer. Ann Surg 2002; 236:208–217.

    Article  PubMed  Google Scholar 

  28. Adams S, Baum R, Stuckensen T, Bitter K, Hör G. Prospective comparison of18F-FDG PET with conventional imaging modalities (CT<MRI<US) in lymph node staging of head and neck cancer. Eur J Nucl Med 1998; 25:1255–1260.

    Article  CAS  PubMed  Google Scholar 

  29. Kresnik E, Mikosch P, Gallowitsch HJ, et al. Evaluation of head and neck cancer with18F-FDG PET: a comparison with conventional methods. Eur J Nucl Med 2001; 28:816–821.

    Google Scholar 

  30. Stokkel MP, ten Broek FW, Hordijk GJ, Koole R, van Rijk PP. Preoperative evaluation of patients with primary head and neck cancer using dual-head 18fluorodeoxyglucose positron emission tomography. Ann Surg 2000; 231:229–234.

    Article  CAS  PubMed  Google Scholar 

  31. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, von Schulthess GK, Steinert HC. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003; 348:2500–2507.

    Article  PubMed  Google Scholar 

  32. Burger I, Goerres G, von Schulthess G, Seifert B, Hany T. PET/CT: diagnostic improvement in recurrent colorectal carcinoma compared to PET alone. Radiology 2002; 225 (p):424.

    Google Scholar 

  33. Akhurst T, Schoder H, Daftatry A, Lis E, Gonen M, Larson S. The addition of CT data increases the confidence of readers in the detection and grading of malignant bone lesions. Radiology 2002; 225 (p):275.

    Google Scholar 

  34. Pannu HK, Cohade C, Fishman EK, Bristow R, Montz F, Wahl RL. Positron emission tomography/computed tomography (PET/CT) detection of chest metastases from ovarian cancer. Radiology 2002; 225 (p):479.

    Google Scholar 

  35. Heron D, Bhatnagar A, Blodgett T, Meltzer C, Townsend D, Yap J. PET/CT in staging and restaging patients with carcinoma of the uterine cervix. Radiology 2002; 225 (p):597.

    Google Scholar 

  36. Bhatnagar A, Heron D, Blodgett T, Meltzer C, Townsend D, Yapp J. Integrated PET/CT for restaging patients with ovarian carcinoma. Radiology 2002; 225 (p):599.

    Google Scholar 

  37. Mac Manus MP, Wong K, Hicks RJ, Matthews JP, Wirth A, Ball DL. Early mortality after radical radiotherapy for non-small-cell lung cancer: comparison of PET-staged and conventionally staged cohorts treated at a large tertiary referral center. Int J Radiat Oncol Biol Phys 2002; 52:351–361.

    PubMed  Google Scholar 

  38. Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003; 44:240–243.

    PubMed  Google Scholar 

  39. Cohade C, Osman M, Nakamoto Y, et al. Initial experience with oral contrast in PET/CT: phantom and clinical studies. J Nucl Med 2003; 44:412–416.

    PubMed  Google Scholar 

  40. Cohade C, Osman M, Marshall LT, Wahl RL. PET-CT: accuracy of PET and CT spatial registration of lung lesions. Eur J Nucl Med Mol Imaging 2003; 30:721–726.

    PubMed  Google Scholar 

  41. Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 2003; 30:603–606.

    PubMed  Google Scholar 

  42. Antoch G, Freudenberg LS, Stattaus J, et al. Whole-body positron emission tomography-CT: optimized CT using oral and IV contrast materials. AJR Am J Roentgenol 2002; 179:1555–1560.

    PubMed  Google Scholar 

  43. Antoch G, Freudenberg LS, Egelhof T, et al. Focal tracer uptake: a potential artifact in contrast-enhanced dual-modality PET/CT scans. J Nucl Med 2002; 43:1339–1342.

    PubMed  Google Scholar 

  44. Goerres GW, von Schulthess GK, Hany TF. Positron emission tomography and PET CT of the head and neck: FDG uptake in normal anatomy, in benign lesions, and in changes resulting from treatment. AJR Am J Roentgenol 2002; 179:1337–1343.

    PubMed  Google Scholar 

  45. Dizendorf EV, Treyer V, von Schulthess GK, Hany TF. Application of oral contrast media in coregistered positron emission tomography-CT. AJR Am J Roentgenol 2002; 179:477–481.

    PubMed  Google Scholar 

  46. Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A. Head and neck imaging with PET and PET/CT: artifacts from dental metallic implants. Eur J Nucl Med Mol Imaging 2002; 29:367–370.

    Article  CAS  PubMed  Google Scholar 

  47. Goerres GW, Ziegler SI, Burger C, Berthold T, von Schulthess GK, Buck A. Artifacts at PET and PET/CT caused by metallic hip prosthetic material. Radiology 2003; 226:577–584.

    PubMed  Google Scholar 

  48. Kamel EM, Goerres GW, Burger C, von Schulthess GK, Steinert HC. Recurrent laryngeal nerve palsy in patients with lung cancer: detection with PET-CT image fusion—report of six cases. Radiology 2002; 224:153–156.

    PubMed  Google Scholar 

  49. Kamel EM, Burger C, Buck A, von Schulthess GM, Goerres GM. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003; 13:724–728.

    PubMed  Google Scholar 

  50. Dizendorf E, Hany TF, Buck A, von Schulthess GK, Burger C. Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 2003; 44:732–738.

    PubMed  Google Scholar 

  51. Nakamoto Y, Tatsumi M, Cohade C, Osman M, Marshall LT, Wahl RL. Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 2003; 30:597–602.

    PubMed  Google Scholar 

  52. Goerres GW, Kamel E, Heidelberg TN, Schwitter MR, Burger C, von Schulthess GK. PET-CT image co-registration in the thorax: influence of respiration. Eur J Nucl Med Mol Imaging 2002; 29:351–360.

    Article  CAS  PubMed  Google Scholar 

  53. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003; 30:588–596.

    PubMed  Google Scholar 

  54. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 1996; 37:1127–1129.

    CAS  PubMed  Google Scholar 

  55. Christy M, Eckerman K. Specific absorbed fractions of energy at various ages from internal photon sources. I.Methods. Oakridge National Laboratory-TM-8381 1987:1–100.

  56. Prasad SR, Wittram C, Shepard JA, McLoud T, Rhea J. Standard-dose and 50%-reduced-dose chest CT: comparing the effect on image quality. AJR Am J Roentgenol 2002; 179:461–465.

    PubMed  Google Scholar 

  57. Kalra MK, Prasad S, Saini S, et al. Clinical comparison of standard-dose and 50% reduced-dose abdominal CT: effect on image quality. AJR Am J Roentgenol 2002; 179:1101–1106.

    PubMed  Google Scholar 

  58. Ell PJ, von Schulthess GK. PET/CT: a new road map. Eur J Nucl Med Mol Imaging 2002; 29:719–720.

    Article  PubMed  Google Scholar 

  59. Czernin J, Phelps ME. Positron emission tomography scanning: current and future applications. Annu Rev Med 2002; 53:89–112.

    PubMed  Google Scholar 

  60. Delbeke D. Oncological applications of FDG PET imaging. J Nucl Med 1999; 40:1706–1715.

    CAS  PubMed  Google Scholar 

  61. Delbeke D. Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 1999; 40:591–603.

    CAS  PubMed  Google Scholar 

  62. von Schulthess GK. Cost considerations regarding an integrated CT-PET system. Eur Radiol 2000; 10 Suppl 3:S377–S380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Schöder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schöder, H., Erdi, Y.E., Larson, S.M. et al. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 30, 1419–1437 (2003). https://doi.org/10.1007/s00259-003-1299-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1299-6

Keywords

Navigation