Skip to main content
Log in

Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients

  • ALARA CONCEPT IN PEDIATRIC IMAGING: ONCOLOGY
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Effective doses for PET and SPECT imaging of molecular imaging agents depend on the radiopharmaceutical, administered activity and the weight of the patient. Effective doses for the accompanying CT scan depend on the CT protocol being used. CT protocols can be designed to produce diagnostic quality images, localization images or attenuation correction data without imaging. In each case, the co-registered molecular imaging examination (PET or SPECT) and the CT study must be acquired without patient movement. For PET/CT, attention to the respiratory phase during the CT study is also of critical importance. In addition to the molecular imaging agents 18F-FDG and 123I-MIBG that are frequently used in children, additional PET and SPECT imaging agents may have promise for molecular imaging in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pierce DA, Shimizu Y, Preston DL et al (1996) Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950–1990. Radiat Res 146:1–27

    Article  PubMed  CAS  Google Scholar 

  2. Preston DL, Pierce DA, Shimizu Y (2000) Age–time patterns for cancer and noncancer excess risks in the atomic bomb survivors. Radiat Res 154:733–734 discussion 734–735

    PubMed  CAS  Google Scholar 

  3. Brasch RC, Boyd DP, Gooding CA (1978) Computed tomographic scanning in children: comparison of radiation dose and resolving power of commercial CT scanners. AJR 131:95–101

    PubMed  CAS  Google Scholar 

  4. Brasch RC, Cann CE (1982) Computed tomographic scanning in children: II. An updated comparison of radiation dose and resolving power of commercial scanners. AJR 138:127–133

    PubMed  CAS  Google Scholar 

  5. Fearon T, Vucich J (1985) Pediatric patient exposures from CT examinations: GE CT/T 9800 scanner. AJR 144:805–809

    PubMed  CAS  Google Scholar 

  6. Nickoloff E (2002) Current adult and pediatric CT doses. Pediatr Radiol 32:250–260

    Article  PubMed  Google Scholar 

  7. Ambrosino MM, Genieser NB, Roche KJ et al (1994) Feasibility of high-resolution, low-dose chest CT in evaluating the pediatric chest. Pediatr Radiol 24:6–10

    Article  PubMed  CAS  Google Scholar 

  8. Kamel IR, Hernandez RJ, Martin JE et al (1994) Radiation dose reduction in CT of the pediatric pelvis. Radiology 190:683–687

    PubMed  CAS  Google Scholar 

  9. Mayo JR, Hartman TE, Lee KS et al (1995) CT of the chest: minimal tube current required for good image quality with the least radiation dose. AJR 164:603–607

    PubMed  CAS  Google Scholar 

  10. Robinson AE, Hill EP, Harpen MD (1986) Radiation dose reduction in pediatric CT. Pediatr Radiol 16:53–54

    Article  PubMed  CAS  Google Scholar 

  11. Rogalla P, Stover B, Scheer I et al (1999) Low-dose spiral CT: applicability to paediatric chest imaging. Pediatr Radiol 29:565–569

    Article  PubMed  CAS  Google Scholar 

  12. Vade A, Demos TC, Olson MC et al (1996) Evaluation of image quality using 1: 1 pitch and 1.5: 1 pitch helical CT in children: a comparative study. Pediatr Radiol 26:891–893

    Article  PubMed  CAS  Google Scholar 

  13. Arch ME, Frush DP (2008) Pediatric body MDCT: a 5-year follow-up survey of scanning parameters used by pediatric radiologists. AJR Am J Roentgenol 191:611–617

    Article  PubMed  Google Scholar 

  14. Donnelly LF, Emery KH, Brody AS et al (2001) Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large Children’s Hospital. AJR 176:303–306

    PubMed  CAS  Google Scholar 

  15. Paterson A, Frush DP, Donnelly LF (2001) Helical CT of the body: are settings adjusted for pediatric patients? AJR 176:297–301

    PubMed  CAS  Google Scholar 

  16. Gelfand MJ, Thomas SR, Kereiakes JG (1983) Absorbed radiation dose from routine imaging of the skeleton in children. Ann Radiol (Paris) 26:421–423

    CAS  Google Scholar 

  17. Treves ST, Davis RT, Fahey FC (2008) Administered radiopharmaceutical doses in children: a survey of 13 pediatric hospitals. J Nucl Med 49:1024–1027

    Article  PubMed  Google Scholar 

  18. Thomas SR, Gelfand MJ, Kereiakes JG et al (1978) Dose to the metaphyseal growth complexes in children undergoing 99mTc-EHDP bone scans. Radiology 126:193–195

    PubMed  CAS  Google Scholar 

  19. Stabin MG, Gelfand MJ (1998) Dosimetry of pediatric nuclear medicine procedures. Q J Nucl Med 42:93–112

    PubMed  CAS  Google Scholar 

  20. ImPACT. London, UK. Available via http://www.impactscan.org. Accessed 3 Apr 2008

  21. Thomas KE, Wang B (2007) Age-specific doses for CT examinations using DLP conversion coefficients: a simple estimation method. Pediatr Radiol 37:S68 (abstract)

    Google Scholar 

  22. Graser A, Wintersperger BJ, Suess C et al (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. AJR 187:695–701

    Article  PubMed  CAS  Google Scholar 

  23. Mawlawi O, Erasmus JJ, Munden RF et al (2006) Quantifying the effect of IV contrast media on integrated PET/CT: clinical evaluation. AJR 186:308–319

    Article  PubMed  Google Scholar 

  24. Beyer T, Antoch G, Blodgett T et al (2003) Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 30:588–596

    PubMed  Google Scholar 

  25. Beyer T, Antoch G, Muller S et al (2004) Acquisition protocol considerations for combined PET/CT imaging. J Nucl Med 45(Suppl 1):25S–35S

    PubMed  Google Scholar 

  26. Osman MM, Cohade C, Nakamoto Y et al (2003) Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 44:240–243

    PubMed  Google Scholar 

  27. Osman MM, Cohade C, Nakamoto Y et al (2003) Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 30:603–606

    PubMed  Google Scholar 

  28. Allen-Auerbach M, Yeom K, Park J et al (2006) Standard PET/CT of the chest during shallow breathing is inadequate for comprehensive staging of lung cancer. J Nucl Med 47:298–301

    PubMed  Google Scholar 

  29. Aquino SL, Kuester LB, Muse VV et al (2006) Accuracy of transmission CT and FDG-PET in the detection of small pulmonary nodules with integrated PET/CT. Eur J Nucl Med Mol Imaging 33:692–696

    Article  PubMed  Google Scholar 

  30. Juergens KU, Weckesser M, Stegger L et al (2006) Tumor staging using whole-body high-resolution 16-channel PET-CT: does additional low-dose chest CT in inspiration improve the detection of solitary pulmonary nodules? Eur Radiol 16:1131–1137

    Article  PubMed  CAS  Google Scholar 

  31. Karabulut N, Toru M, Gelebek V et al (2002) Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol 12:2764–2769

    PubMed  Google Scholar 

  32. Rusinek H, Naidich DP, McGuinness G et al (1998) Pulmonary nodule detection: low-dose versus conventional CT. Radiology 209:243–249

    PubMed  CAS  Google Scholar 

  33. Weng MJ, Wu MT, Pan HB et al (2004) The feasibility of low-dose CT for pulmonary metastasis in patients with primary gynecologic malignancy. Clin Imaging 28:408–414

    Article  PubMed  Google Scholar 

  34. Wormanns D, Ludwig K, Beyer F et al (2005) Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT. Eur Radiol 15:14–22

    Article  PubMed  Google Scholar 

  35. Sharp SE, Helton KJ, Gelfand MJ et al (2007) Detection of pulmonary nodules on localization CT scans acquired during PET/CT imaging. Pediatr Radiol 37:S60 (abstract)

    Google Scholar 

  36. Lucaya J, Piqueras J, Garcia-Pena P et al (2000) Low-dose high-resolution CT of the chest in children and young adults: dose, cooperation, artifact incidence, and image quality. AJR 175:985–992

    PubMed  CAS  Google Scholar 

  37. Cobby M, Whipp E, Bullimore J et al (1990) CT appearances of relapse of lymphoma in the lung. Clin Radiol 41:232–238

    Article  PubMed  CAS  Google Scholar 

  38. Hwang GL, Leung AN, Zinck SE et al (2005) Recurrent lymphoma of the lung: computed tomography appearance. J Comput Assist Tomogr 29:228–230

    Article  PubMed  Google Scholar 

  39. Braithwaite K, Udaysankar UK, Karsli T et al (2007) Diagnostic accuracy of low dose head CT evaluations with shunted hydrocephalus. Pediatr Radiol 37:S59 (abstract)

    Google Scholar 

  40. Hopkins DJ, Laor T, Ryckman FC et al (2007) Dents and rays: are we doing the right thing? Pediatr Radiol 37:S69

    Article  Google Scholar 

  41. Karmazyn B, Frush D, Applegate K et al (2007) Comparison of standard and reduced radiation dose 16-slice MDCT for detection of nephrolithiasis. Pediatr Radiol 37:S57 (abstract)

    Article  Google Scholar 

  42. Fahey FH, Palmer MR, Strauss KJ et al (2007) Dosimetry and adequacy of CT-based attenuation correction for pediatric PET: phantom study. Radiology 243:96–104

    Article  PubMed  Google Scholar 

  43. Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272–278

    PubMed  Google Scholar 

  44. Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  45. Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40:1623–1629

    PubMed  CAS  Google Scholar 

  46. Lim R, Fahey FH, Drubach LA et al (2007) Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop 27:277–282

    PubMed  Google Scholar 

  47. Ovadia D, Metser U, Lievshitz G et al (2007) Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop 27:90–93

    PubMed  Google Scholar 

  48. Drubach LA, Sapp MV, Laffin S et al (2008) Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol 38:776–779

    Article  PubMed  Google Scholar 

  49. Grant FD, Fahey FH, Packard AB et al (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  50. Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–419

    Article  PubMed  Google Scholar 

  51. Pirotte B, Goldman S, Salzberg S et al (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38:146–155

    Article  PubMed  Google Scholar 

  52. Pirotte B, Goldman S, Van Bogaert P et al (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128–139 discussion 128–139

    Article  PubMed  Google Scholar 

  53. Pirotte B, Levivier M, Morelli D et al (2005) Positron emission tomography for the early postsurgical evaluation of pediatric brain tumors. Childs Nerv Syst 21:294–300

    Article  PubMed  Google Scholar 

  54. Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386

    Article  PubMed  Google Scholar 

  55. Becherer A, Karanikas G, Szabo M et al (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30:1561–1567

    Article  PubMed  CAS  Google Scholar 

  56. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47:904–911

    PubMed  CAS  Google Scholar 

  57. Hardy OT, Hernandez-Pampaloni M, Saffer JR et al (2007) Accuracy of [18F]fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 92:4706–4711

    Article  PubMed  CAS  Google Scholar 

  58. Ribeiro MJ, De Lonlay P, Delzescaux T et al (2005) Characterization of hyperinsulinism in infancy assessed with PET and 18F-fluoro-L-DOPA. J Nucl Med 46:560–566

    PubMed  Google Scholar 

  59. Inoue T, Tomiyoshi K, Higuichi T et al (1998) Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 39:663–667

    PubMed  CAS  Google Scholar 

  60. Shoup TM, Olson J, Hoffman JM et al (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    PubMed  CAS  Google Scholar 

  61. Sheehy N, Zurakowski D, Tetrault T et al (2008) Substantial dose reduction in pediatric 99mTc-DMSA renal SPECT using 3D ordered-subset expectation-maximization iterative reconstruction (OSEM) techniques with resolution recovery. J Nucl Med 49:138P (abstract)

    Google Scholar 

  62. Caamano Stansfield E, Sheehy S et al (2008) Improved image quality and dose reduction in 99mTc-MDP bone SPECT using 3D ordered-subset expectation-maximization iterative reconstruction (OSEM) with resolution recovery. J Nucl Med 49:397P (abstract)

    Google Scholar 

  63. Gelfand MJ (1993) Meta-iodobenzylguanidine in children. Semin Nucl Med 23:231–242

    Article  PubMed  CAS  Google Scholar 

  64. Gelfand MJ, Elgazzar AH, Kriss VM et al (1994) Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med 35:1753–1757

    PubMed  CAS  Google Scholar 

  65. Paltiel HJ, Gelfand MJ, Elgazzar AH et al (1994) Neural crest tumors: I-123 MIBG imaging in children. Radiology 190:117–121

    PubMed  CAS  Google Scholar 

  66. Sharp S, Shulkin B, Furman W et al (2008) I-123-MIBG scintigraphy and [F-18]FDG PET in neuroblastoma. J Nucl Med 49:84P (abstract)

    Google Scholar 

  67. Muller HL, Fruhwald MC, Scheubeck M et al (1998) A possible role for somatostatin receptor scintigraphy in the diagnosis and follow-up of children with medulloblastoma. J Neurooncol 38:27–40

    Article  PubMed  CAS  Google Scholar 

  68. Gelfand MJ, Lemen LC (2007) PET/CT and SPECT/CT dosimetry in children: the challenge to the pediatric imager. Semin Nucl Med 37:391–398

    Article  PubMed  Google Scholar 

  69. Stabin MG (2007) Internal dosimetry. In: Treves ST (ed) Pediatric nuclear medicine/PET. Springer, New York, pp 513–520

    Chapter  Google Scholar 

  70. Dhawan V, Belakhlef A, Robeson W et al (1996) Bladder wall radiation dose in humans from fluorine-18-FDOPA. J Nucl Med 37:1850–1852

    PubMed  CAS  Google Scholar 

  71. Deloar HM, Fujiwara T, Nakamura T et al (1998) Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 25:629–633

    Article  PubMed  CAS  Google Scholar 

  72. Vesselle H, Grierson J, Peterson LM et al (2003) 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med 44:1482–1488

    PubMed  CAS  Google Scholar 

  73. DeGrado TR, Reiman RE, Price DT et al (2002) Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43:92–96

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The author wishes to thank Susan E. Sharp M.D. and Lisa L. Lemen Ph.D. for their review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Gelfand.

Additional information

Dr. Gelfand has no relevant financial relationships or potential conflicts of interest related to the material to be presented.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelfand, M.J. Dosimetry of FDG PET/CT and other molecular imaging applications in pediatric patients. Pediatr Radiol 39 (Suppl 1), 46–56 (2009). https://doi.org/10.1007/s00247-008-1023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-008-1023-6

Keywords

Navigation