Skip to main content

Advertisement

Log in

State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications

  • Invited Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2015

Abstract

This article reviews the most relevant state-of-the-art magnetic resonance (MR) techniques, which are clinically available to investigate brain diseases. MR acquisition techniques addressed include notably diffusion imaging (diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DKI)) as well as perfusion imaging (dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast enhanced (DCE)). The underlying models used to process these images are described, as well as the theoretic underpinnings of quantitative diffusion and perfusion MR imaging-based methods. The technical requirements and how they may help to understand, classify, or follow-up neurological pathologies are briefly summarized. Techniques, principles, advantages but also intrinsic limitations, typical artifacts, and alternative solutions developed to overcome them are discussed. In this article, we also review routinely available three-dimensional (3D) techniques in neuro MRI, including state-of-the-art and emerging angiography sequences, and briefly introduce more recently proposed 3D quantitative neuro-anatomy sequences, and new technology, such as multi-slice and multi-transmit imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

AKC:

Apparent excess kurtosis coefficient

ASL:

Arterial spin labeling

DCE:

Dynamic contrast enhanced

DKI:

Diffusion kurtosis imaging

DSC:

Dynamic susceptibility contrast

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

CAIPIRINHA:

Controlled aliasing in parallel imaging results in higher acceleration

FA:

Fractional anisotropy

MD:

Mean diffusivity

MS-EPI:

Multi-shot EPI

MRE:

Magnetic resonance elastography

3D-MPRAGE:

Magnetization prepared rapid gradient echo

ODF:

Orientation distribution functions

PAT:

Parallel acquisition technique

PDF:

Probability distribution function of diffusion

pCASL:

Pseudo-continuous ASL

PASL:

Pulsed ASL

RS-EPI:

Readout-segmented EPI

SS-EPI:

Single-shot EPI

SPACE:

Sampling perfection with application optimized contrasts using different flip angle evolutions

ZOOM-EPI:

Zonal oblique multi-slice EPI

References

  1. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480

    PubMed  Google Scholar 

  2. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    PubMed  Google Scholar 

  3. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23:698–710

    PubMed Central  PubMed  Google Scholar 

  4. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641

    CAS  PubMed  Google Scholar 

  5. Beppu T, Inoue T, Shibata Y, Yamada N, Kurose A, Ogasawara K, Ogawa A, Kabasawa H (2005) Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 63:56–61, discussion 61

    PubMed  Google Scholar 

  6. Stieltjes B, Schluter M, Didinger B, Weber MA, Hahn HK, Parzer P, Rexilius J, Konrad-Verse O, Peitgen HO, Essig M (2006) Diffusion tensor imaging in primary brain tumors: reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model. Neuroimage 31:531–542

    PubMed  Google Scholar 

  7. Cruz Junior LC, Sorensen AG (2005) Diffusion tensor magnetic resonance imaging of brain tumors. Neurosurg Clin N Am 16:115–134

    PubMed  Google Scholar 

  8. Cruz LCJ, Sorensen AG (2006) Diffusion tensor magnetic resonance imaging of brain tumors. Magn Reson Imaging Clin N Am 14:183–202

    PubMed  Google Scholar 

  9. Arfanakis K, Gui M, Lazar M (2006) Optimization of white matter tractography for pre-surgical planning and image-guided surgery. Oncol Rep 15:1061–1064

    PubMed  Google Scholar 

  10. Keles GE, Berger MS (2004) Advances in neurosurgical technique in the current management of brain tumors. Semin Oncol 31:659–665

    PubMed  Google Scholar 

  11. Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70:764–773

    PubMed Central  PubMed  Google Scholar 

  12. Huang J, Friedland RP, Auchus AP (2007) Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early Alzheimer disease: preliminary evidence of axonal degeneration in the temporal lobe. AJNR Am J Neuroradiol 28:1943–1948

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Haller S, Missonnier P, Herrmann FR, Rodriguez C, Deiber MP, Nguyen D, Gold G, Lovblad KO, Giannakopoulos P (2013) Individual classification of mild cognitive impairment subtypes by support vector machine analysis of white matter DTI. AJNR Am J Neuroradiol 34:283–291

    CAS  PubMed  Google Scholar 

  14. Bloy L, Verma R (2008) On computing the underlying fiber directions from the diffusion orientation distribution function. Med Image Comput Comput Assist Interv 11:1–8

    PubMed  Google Scholar 

  15. Descoteaux M, Deriche R (2007) Segmentation of Q-Ball images using statistical surface evolution. Med Image Comput Comput Assist Interv 10:769–776

    PubMed  Google Scholar 

  16. Lazar M, Jensen JH, Xuan L, Helpern JA (2008) Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn Reson Med 60:774–781

    PubMed Central  PubMed  Google Scholar 

  17. Leow AD, Zhu S, Zhan L, McMahon K, de Zubicaray GI, Meredith M, Wright MJ, Toga AW, Thompson PM (2009) The tensor distribution function. Magn Reson Med 61:205–214

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–23

    PubMed  Google Scholar 

  19. De Santis S, Gabrielli A, Palombo M, Maraviglia B, Capuani S (2011) Non-Gaussian diffusion imaging: a brief practical review. Magn Reson Imaging 29:1410–1416

    PubMed  Google Scholar 

  20. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, Van Gool SW, Van Calenbergh F, De Vleeschouwer S, Van Hecke W, Sunaert S (2012) Gliomas: diffusion kurtosis MR imaging in grading. Radiology 263:492–501

    PubMed  Google Scholar 

  21. Van Cauter S, De Keyzer F, Sima DM, Croitor Sava A, D’Arco F, Veraart J, Peeters RR, Leemans A, Van Gool S, Wilms G, Demaerel P, Van Huffel S, Sunaert S, Himmelreich U (2014) Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro Oncol

  22. Hui ES, Du F, Huang S, Shen Q, Duong TQ (2012) Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain Res 1451:100–109

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Yan X, Zhou M, Ying L, Yin D, Fan M, Yang G, Zhou Y, Song F, Xu D (2013) Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an application to stroke patient data. Comput Med Imaging Graph 37:272–280

    PubMed Central  PubMed  Google Scholar 

  24. Kamagata K, Tomiyama H, Hatano T, Motoi Y, Abe O, Shimoji K, Kamiya K, Suzuki M, Hori M, Yoshida M, Hattori N, Aoki S (2014) A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology 56:251–258

    PubMed  Google Scholar 

  25. Falangola MF, Jensen JH, Babb JS, Hu C, Castellanos FX, Di Martino A, Ferris SH, Helpern JA (2008) Age-related non-Gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging 28:1345–1350

    PubMed Central  PubMed  Google Scholar 

  26. Falangola MF, Jensen JH, Tabesh A, Hu C, Deardorff RL, Babb JS, Ferris S, Helpern JA (2013) Non-Gaussian diffusion MRI assessment of brain microstructure in mild cognitive impairment and Alzheimer’s disease. Magn Reson Imaging 31:840–846

    PubMed  Google Scholar 

  27. Fieremans E, Jensen JH, Helpern JA (2011) White matter characterization with diffusional kurtosis imaging. Neuroimage 58:177–188

    PubMed Central  PubMed  Google Scholar 

  28. Helpern JA, Adisetiyo V, Falangola MF, Hu C, Di Martino A, Williams K, Castellanos FX, Jensen JH (2011) Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging 33:17–23

    PubMed Central  PubMed  Google Scholar 

  29. Gupta V, Ayache N, Pennec X (2013) Improving DTI resolution from a single clinical acquisition: a statistical approach using spatial prior. Med Image Comput Comput Assist Interv 16:477–484

    PubMed  Google Scholar 

  30. Durst CR, Raghavan P, Shaffrey ME, Schiff D, Lopes MB, Sheehan JP, Tustison NJ, Patrie JT, Xin W, Elias WJ, Liu KC, Helm GA, Cupino A, Wintermark M (2014) Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 56:107–115

    PubMed  Google Scholar 

  31. Roy B, Gupta RK, Maudsley AA, Awasthi R, Sheriff S, Gu M, Husain N, Mohakud S, Behari S, Pandey CM, Rathore RK, Spielman DM, Alger JR (2013) Utility of multiparametric 3-T MRI for glioma characterization. Neuroradiology 55:603–613

    PubMed Central  PubMed  Google Scholar 

  32. Falk A, Fahlstrom M, Rostrup E, Berntsson S, Zetterling M, Morell A, Larsson HB, Smits A, Larsson EM (2014) Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach. Neuroradiology 56:1031–1038

    PubMed  Google Scholar 

  33. Frost R, Porter DA, Miller KL, Jezzard P (2012) Implementation and assessment of diffusion-weighted partial Fourier readout-segmented echo-planar imaging. Magn Reson Med 68:441–451

    PubMed  Google Scholar 

  34. Heidemann RM, Porter DA, Anwander A, Feiweier T, Heberlein K, Knosche TR, Turner R (2010) Diffusion imaging in humans at 7 T using readout-segmented EPI and GRAPPA. Magn Reson Med 64:9–14

    PubMed  Google Scholar 

  35. Porter DA, Heidemann RM (2009) High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 62:468–475

    PubMed  Google Scholar 

  36. Brockstedt S, Moore JR, Thomsen C, Holtas S, Stahlberg F (2000) High-resolution diffusion imaging using phase-corrected segmented echo-planar imaging. Magn Reson Imaging 18:649–657

    CAS  PubMed  Google Scholar 

  37. Blaimer M, Breuer F, Mueller M, Heidemann RM, Griswold MA, Jakob PM (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15:223–236

    PubMed  Google Scholar 

  38. Breuer FA, Kellman P, Griswold MA, Jakob PM (2005) Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 53:981–985

    PubMed  Google Scholar 

  39. Deshmane A, Gulani V, Griswold MA, Seiberlich N (2012) Parallel MR imaging. J Magn Reson Imaging 36:55–72

    PubMed  Google Scholar 

  40. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    PubMed  Google Scholar 

  41. Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM (2004) Field-of-view limitations in parallel imaging. Magn Reson Med 52:1118–1126

    PubMed  Google Scholar 

  42. Griswold MA, Blaimer M, Breuer F, Heidemann RM, Mueller M, Jakob PM (2005) Parallel magnetic resonance imaging using the GRAPPA operator formalism. Magn Reson Med 54:1553–1556

    PubMed  Google Scholar 

  43. Heidemann RM, Griswold MA, Seiberlich N, Kruger G, Kannengiesser SA, Kiefer B, Wiggins G, Wald LL, Jakob PM (2006) Direct parallel image reconstructions for spiral trajectories using GRAPPA. Magn Reson Med 56:317–326

    PubMed  Google Scholar 

  44. Seiberlich N, Breuer FA, Blaimer M, Barkauskas K, Jakob PM, Griswold MA (2007) Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG). Magn Reson Med 58:1257–1265

    PubMed  Google Scholar 

  45. Seiberlich N, Breuer F, Blaimer M, Jakob P, Griswold M (2008) Self-calibrating GRAPPA operator gridding for radial and spiral trajectories. Magn Reson Med 59:930–935

    PubMed  Google Scholar 

  46. Seiberlich N, Ehses P, Duerk J, Gilkeson R, Griswold M (2011) Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging. Magn Reson Med 65:492–505

    PubMed Central  PubMed  Google Scholar 

  47. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691

    PubMed  Google Scholar 

  48. Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold MA, Jakob PM (2006) Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 55:549–556

    PubMed  Google Scholar 

  49. Wheeler-Kingshott CA, Parker GJ, Symms MR, Hickman SJ, Tofts PS, Miller DH, Barker GJ (2002) ADC mapping of the human optic nerve: increased resolution, coverage, and reliability with CSF-suppressed ZOOM-EPI. Magn Reson Med 47:24–31

    PubMed  Google Scholar 

  50. Dowell NG, Jenkins TM, Ciccarelli O, Miller DH, Wheeler-Kingshott CA (2009) Contiguous-slice zonally oblique multislice (CO-ZOOM) diffusion tensor imaging: examples of in vivo spinal cord and optic nerve applications. J Magn Reson Imaging 29:454–460

    PubMed  Google Scholar 

  51. Salmenpera TM, Simister RJ, Bartlett P, Symms MR, Boulby PA, Free SL, Barker GJ, Duncan JS (2006) High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 71:102–106

    PubMed  Google Scholar 

  52. Wheeler-Kingshott CA, Hickman SJ, Parker GJ, Ciccarelli O, Symms MR, Miller DH, Barker GJ (2002) Investigating cervical spinal cord structure using axial diffusion tensor imaging. Neuroimage 16:93–102

    PubMed  Google Scholar 

  53. Wheeler-Kingshott CA, Trip SA, Symms MR, Parker GJ, Barker GJ, Miller DH (2006) In vivo diffusion tensor imaging of the human optic nerve: pilot study in normal controls. Magn Reson Med 56:446–451

    CAS  PubMed  Google Scholar 

  54. Bertrand A, Oppenheim C, Moulahi H, Naggara O, Rodrigo S, Patsoura S, Adamsbaum C, Pierrefitte S, Meder JF (2006) Diffusion-weighted imaging of the brain: normal patterns, traps and artifacts. J Radiol 87:1837–1847

    CAS  PubMed  Google Scholar 

  55. Gallichan D, Scholz J, Bartsch A, Behrens TE, Robson MD, Miller KL (2010) Addressing a systematic vibration artifact in diffusion-weighted MRI. Hum Brain Mapp 31:193–202

    PubMed  Google Scholar 

  56. Gallichan D, Robson MD, Bartsch A, Miller KL (2009) TREMR: table-resonance elastography with MR. Magn Reson Med 62:815–821

    PubMed  Google Scholar 

  57. Sorensen AG, Tievsky AL, Ostergaard L, Weisskoff RM, Rosen BR (1997) Contrast agents in functional MR imaging. J Magn Reson Imaging 7:47–55

    CAS  PubMed  Google Scholar 

  58. Essig M, Dinkel J, Gutierrez JE (2012) Use of contrast media in neuroimaging. Magn Reson Imaging Clin N Am 20:633–648

    PubMed  Google Scholar 

  59. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR (1995) MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 34:878–887

    CAS  PubMed  Google Scholar 

  60. Knutsson L, Stahlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 23:1–21

    CAS  PubMed  Google Scholar 

  61. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    CAS  PubMed  Google Scholar 

  62. Leach MO, Morgan B, Tofts PS, Buckley DL, Huang W, Horsfield MA, Chenevert TL, Collins DJ, Jackson A, Lomas D, Whitcher B, Clarke L, Plummer R, Judson I, Jones R, Alonzi R, Brunner T, Koh DM, Murphy P, Waterton JC, Parker G, Graves MJ, Scheenen TW, Redpath TW, Orton M, Karczmar G, Huisman H, Barentsz J, Padhani A (2012) Imaging vascular function for early stage clinical trials using dynamic contrast-enhanced magnetic resonance imaging. Eur Radiol 22:1451–1464

    CAS  PubMed  Google Scholar 

  63. Simonsen CZ, Ostergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging 12:411–416

    CAS  PubMed  Google Scholar 

  64. Ostergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22:710–717

    PubMed  Google Scholar 

  65. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A (2001) Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 14:457–463

    CAS  PubMed  Google Scholar 

  66. Ostergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15:3–9

    PubMed  Google Scholar 

  67. Knutsson L, Stahlberg F, Wirestam R, van Osch MJ (2013) Effects of blood DeltaR2* non-linearity on absolute perfusion quantification using DSC-MRI: comparison with Xe-133 SPECT. Magn Reson Imaging 31:651–655

    PubMed  Google Scholar 

  68. Kudo K, Christensen S, Sasaki M, Ostergaard L, Shirato H, Ogasawara K, Wintermark M, Warach S (2013) Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom. Radiology 267:201–211

    PubMed Central  PubMed  Google Scholar 

  69. Boutelier T, Kudo K, Pautot F, Sasaki M (2012) Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging. IEEE Trans Med Imaging 31:1381–1395

    PubMed  Google Scholar 

  70. Kudo K, Boutelier T, Pautot F, Honjo K, Hu JQ, Wang HB, Shintaku K, Uwano I, Sasaki M (2014) Bayesian analysis of perfusion-weighted imaging to predict infarct volume: comparison with singular value decomposition. Magn Reson Med Sci 13:45–50

    PubMed  Google Scholar 

  71. Sasaki M, Kudo K, Boutelier T, Pautot F, Christensen S, Uwano I, Goodwin J, Higuchi S, Ito K, Yamashita F (2013) Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom. Neuroradiology 55:1197–1203

    PubMed  Google Scholar 

  72. Nael K, Mossadeghi B, Boutelier T, Kubal W, Krupinski EA, Dagher J, Villablanca JP (2014) Bayesian estimation of cerebral perfusion using reduced-contrast-dose dynamic susceptibility contrast perfusion at 3 T. AJNR Am J Neuroradiol

  73. Cron GO, Santyr G, Kelcz F (1999) Accurate and rapid quantitative dynamic contrast-enhanced breast MR imaging using spoiled gradient-recalled echoes and bookend T (1) measurements. Magn Reson Med 42:746–753

    CAS  PubMed  Google Scholar 

  74. Fram EK, Herfkens RJ, Johnson GA, Glover GH, Karis JP, Shimakawa A, Perkins TG, Pelc NJ (1987) Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 5:201–208

    CAS  PubMed  Google Scholar 

  75. O’Connor JP, Tofts PS, Miles KA, Parkes LM, Thompson G, Jackson A (2011) Dynamic contrast-enhanced imaging techniques: CT and MRI. Br J Radiol 84 Spec No 2: S112-20

  76. Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M, Jiang Q, Scarpace L, Arbab AS, Narang J, Soltanian-Zadeh H, Paudyal R, Ewing JR (2012) Model selection for DCE-T1 studies in glioblastoma. Magn Reson Med 68:241–251

    PubMed Central  PubMed  Google Scholar 

  77. Pannetier NA, Debacker CS, Mauconduit F, Christen T, Barbier EL (2013) A simulation tool for dynamic contrast enhanced MRI. PLoS One 8:e57636

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Sourbron SP, Buckley DL (2013) Classic models for dynamic contrast-enhanced MRI. NMR Biomed 26:1004–1027

    PubMed  Google Scholar 

  79. Haris M, Husain N, Singh A, Awasthi R, Singh Rathore RK, Husain M, Gupta RK (2008) Dynamic contrast-enhanced (DCE) derived transfer coefficient (ktrans) is a surrogate marker of matrix metalloproteinase 9 (MMP-9) expression in brain tuberculomas. J Magn Reson Imaging 28:588–597

    PubMed  Google Scholar 

  80. Tofts PS, Collins DJ (2011) Multicentre imaging measurements for oncology and in the brain. Br J Radiol 84 Spec No 2: S213-26

  81. Murphy PS, McCarthy TJ, Dzik-Jurasz AS (2008) The role of clinical imaging in oncological drug development. Br J Radiol 81:685–692

    CAS  PubMed  Google Scholar 

  82. Singh A, Haris M, Rathore D, Purwar A, Sarma M, Bayu G, Husain N, Rathore RK, Gupta RK (2007) Quantification of physiological and hemodynamic indices using T (1) dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 26:871–880

    PubMed  Google Scholar 

  83. Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag 23:65–83

    PubMed  Google Scholar 

  84. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9:167–177

    PubMed  Google Scholar 

  85. Nathan P, Zweifel M, Padhani AR, Koh DM, Ng M, Collins DJ, Harris A, Carden C, Smythe J, Fisher N, Taylor NJ, Stirling JJ, Lu SP, Leach MO, Rustin GJ, Judson I (2012) Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res 18:3428–3439

    CAS  PubMed  Google Scholar 

  86. Garpebring A, Brynolfsson P, Yu J, Wirestam R, Johansson A, Asklund T, Karlsson M (2013) Uncertainty estimation in dynamic contrast-enhanced MRI. Magn Reson Med 69:992–1002

    PubMed  Google Scholar 

  87. Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993–1000

    PubMed  Google Scholar 

  88. Barbier EL (2013) T-*weighted perfusion MRI. Diagn Interv Imaging

  89. Kostler H, Ritter C, Lipp M, Beer M, Hahn D, Sandstede J (2004) Prebolus quantitative MR heart perfusion imaging. Magn Reson Med 52:296–299

    PubMed  Google Scholar 

  90. Gaens ME, Backes WH, Rozel S, Lipperts M, Sanders SN, Jaspers K, Cleutjens JP, Sluimer JC, Heeneman S, Daemen MJ, Welten RJ, Daemen JW, Wildberger JE, Kwee RM, Kooi ME (2013) Dynamic contrast-enhanced MR imaging of carotid atherosclerotic plaque: model selection, reproducibility, and validation. Radiology 266:271–279

    PubMed  Google Scholar 

  91. Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, Merkle EM, Boll DT (2013) Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology 266:801–811

    PubMed  Google Scholar 

  92. Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10:237–249

    CAS  PubMed  Google Scholar 

  94. Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708

    CAS  PubMed  Google Scholar 

  95. Wang Z, Wang J, Connick TJ, Wetmore GS, Detre JA (2005) Continuous ASL (CASL) perfusion MRI with an array coil and parallel imaging at 3 T. Magn Reson Med 54:732–737

    PubMed  Google Scholar 

  96. Dai W, Garcia D, de Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497

    PubMed Central  PubMed  Google Scholar 

  97. Chen Y, Wang DJ, Detre JA (2011) Test-retest reliability of arterial spin labeling with common labeling strategies. J Magn Reson Imaging 33:940–949

    PubMed Central  PubMed  Google Scholar 

  98. Golay X, Guenther M (2012) Arterial spin labelling: final steps to make it a clinical reality. MAGMA 25:79–82

    PubMed  Google Scholar 

  99. Wang DJ, Chen Y, Fernandez-Seara MA, Detre JA (2011) Potentials and challenges for arterial spin labeling in pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 337:359–366

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Wang L, Zheng G, Zhao T, Guo C, Li L, Lu G (2013) Clinical applications of arterial spin labeling technique in brain diseases. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 30:195–199

    CAS  PubMed  Google Scholar 

  101. Davies NP, Jezzard P (2003) Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med 49:1133–1142

    PubMed  Google Scholar 

  102. Marchal G, Furlan M, Beaudouin V, Rioux P, Hauttement JL, Serrati C, de la Sayette V, Le Doze F, Viader F, Derlon JM, Baron JC (1996) Early spontaneous hyperperfusion after stroke. A marker of favourable tissue outcome? Brain 119:409–419

    PubMed  Google Scholar 

  103. Marchal G, Young AR, Baron JC (1999) Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab 19:467–482

    CAS  PubMed  Google Scholar 

  104. Zaharchuk G, Yamada M, Sasamata M, Jenkins BG, Moskowitz MA, Rosen BR (2000) Is all perfusion-weighted magnetic resonance imaging for stroke equal? The temporal evolution of multiple hemodynamic parameters after focal ischemia in rats correlated with evidence of infarction. J Cereb Blood Flow Metab 20:1341–1351

    CAS  PubMed  Google Scholar 

  105. Viallon M, Altrichter S, Pereira VM, Nguyen D, Sekoranja L, Federspiel A, Kulcsar Z, Sztajzel R, Ouared R, Bonvin C, Pfeuffer J, Lovblad KO (2010) Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3 T. Eur Neurol 64:286–296

    PubMed  Google Scholar 

  106. Amann M, Achtnichts L, Hirsch JG, Naegelin Y, Gregori J, Weier K, Thoni A, Mueller-Lenke N, Radue EW, Gunther M, Kappos L, Gass A (2012) 3D GRASE arterial spin labelling reveals an inverse correlation of cortical perfusion with the white matter lesion volume in MS. Mult Scler 18:1570–1576

    PubMed  Google Scholar 

  107. Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498

    PubMed  Google Scholar 

  108. Tan H, Hoge WS, Hamilton CA, Gunther M, Kraft RA (2011) 3D GRASE PROPELLER: improved image acquisition technique for arterial spin labeling perfusion imaging. Magn Reson Med 66:168–173

    PubMed Central  PubMed  Google Scholar 

  109. Vidorreta M, Wang Z, Rodriguez I, Pastor MA, Detre JA, Fernandez-Seara MA (2012) Comparison of 2D and 3D single-shot ASL perfusion fMRI sequences. Neuroimage 66C:662–671

    Google Scholar 

  110. Yoshiura T, Hiwatashi A, Noguchi T, Yamashita K, Ohyagi Y, Monji A, Nagao E, Kamano H, Togao O, Honda H (2009) Arterial spin labelling at 3-T MR imaging for detection of individuals with Alzheimer’s disease. Eur Radiol 19:2819–2825

    PubMed  Google Scholar 

  111. Yoshiura T, Hiwatashi A, Yamashita K, Ohyagi Y, Monji A, Takayama Y, Nagao E, Kamano H, Noguchi T, Honda H (2009) Simultaneous measurement of arterial transit time, arterial blood volume, and cerebral blood flow using arterial spin-labeling in patients with Alzheimer disease. AJNR Am J Neuroradiol 30:1388–1393

    CAS  PubMed  Google Scholar 

  112. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM (2009) Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 250:856–866

    PubMed Central  PubMed  Google Scholar 

  113. Binnewijzend MA, Kuijer JP, Benedictus MR, van der Flier WM, Wink AM, Wattjes MP, van Berckel BN, Scheltens P, Barkhof F (2013) Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity. Radiology 267:221–230

    PubMed  Google Scholar 

  114. Wolk DA, Detre JA (2012) Arterial spin labeling MRI: an emerging biomarker for Alzheimer’s disease and other neurodegenerative conditions. Curr Opin Neurol 25:421–428

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Xekardaki A, Rodriguez C, Montandon ML, Toma S, Tombeur E, Herrmann FR, Zekry D, Lovblad KO, Barkhof F, Giannakopoulos P, Haller S (2014) Arterial spin labeling may contribute to the prediction of cognitive deterioration in healthy elderly individuals. Radiology 140680

  116. Bozoki AC, An H, Bozoki ES, Little RJ (2009) The existence of cognitive plateaus in Alzheimer’s disease. Alzheimers Dement 5:470–478

    PubMed  Google Scholar 

  117. Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin KP, Miller BL, Weiner MW, Schuff N (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67:1215–1220

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, Schonknecht P, Ito K, Mielke R, Kalbe E, Zundorf G, Delbeuck X, Pelati O, Anchisi D, Fazio F, Kerrouche N, Desgranges B, Eustache F, Beuthien-Baumann B, Menzel C, Schroder J, Kato T, Arahata Y, Henze M, Heiss WD (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 17:302–316

    CAS  PubMed  Google Scholar 

  119. Pagani M, Dessi B, Morbelli S, Brugnolo A, Salmaso D, Piccini A, Mazzei D, Villavecchia G, Larsson SA, Rodriguez G, Nobili F (2010) MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res 7:287–294

    CAS  PubMed  Google Scholar 

  120. Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    CAS  PubMed  Google Scholar 

  121. Qiu M, Paul Maguire R, Arora J, Planeta-Wilson B, Weinzimmer D, Wang J, Wang Y, Kim H, Rajeevan N, Huang Y, Carson RE, Constable RT (2010) Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects. Magn Reson Med 63:374–384

    PubMed Central  PubMed  Google Scholar 

  122. Bokkers RP, van Laar PJ, van de Ven KC, Kapelle LJ, Klijn CJ, Hendrikse J (2008) Arterial spin-labeling MR imaging measurements of timing parameters in patients with a carotid artery occlusion. AJNR Am J Neuroradiol 29:1698–1703

    CAS  PubMed  Google Scholar 

  123. Hendrikse J, Petersen ET, Golay X (2012) Vascular disorders: insights from arterial spin labeling. Neuroimaging Clin N Am 22:259–69, x-xi

    PubMed  Google Scholar 

  124. Noguchi T, Kawashima M, Irie H, Ootsuka T, Nishihara M, Matsushima T, Kudo S (2011) Arterial spin-labeling MR imaging in moyamoya disease compared with SPECT imaging. Eur J Radiol 80:e557–62

    PubMed  Google Scholar 

  125. Gunther M, Bock M, Schad LR (2001) Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 46:974–984

    CAS  PubMed  Google Scholar 

  126. Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54:366–372

    PubMed  Google Scholar 

  127. Shen Q, Duong TQ (2011) Background suppression in arterial spin labeling MRI with a separate neck labeling coil. NMR Biomed 24:1111–1118

    PubMed Central  PubMed  Google Scholar 

  128. Rostrup E, Larsson HB, Toft PB, Garde K, Thomsen C, Ring P, Sondergaard L, Henriksen O (1994) Functional MRI of CO2 induced increase in cerebral perfusion. NMR Biomed 7:29–34

    CAS  PubMed  Google Scholar 

  129. Bruhn H, Kleinschmidt A, Boecker H, Merboldt KD, Hanicke W, Frahm J (1994) The effect of acetazolamide on regional cerebral blood oxygenation at rest and under stimulation as assessed by MRI. J Cereb Blood Flow Metab 14:742–748

    CAS  PubMed  Google Scholar 

  130. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Haller S, Bonati LH, Rick J, Klarhofer M, Speck O, Lyrer PA, Bilecen D, Engelter ST, Wetzel SG (2008) Reduced cerebrovascular reserve at CO2 BOLD MR imaging is associated with increased risk of periinterventional ischemic lesions during carotid endarterectomy or stent placement: preliminary results. Radiology 249:251–258

    PubMed  Google Scholar 

  132. Markus H, Cullinane M (2001) Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124:457–467

    CAS  PubMed  Google Scholar 

  133. Blaser T, Hofmann K, Buerger T, Effenberger O, Wallesch CW, Goertler M (2002) Risk of stroke, transient ischemic attack, and vessel occlusion before endarterectomy in patients with symptomatic severe carotid stenosis. Stroke 33:1057–1062

    PubMed  Google Scholar 

  134. Richiardi J, Monsch AU, Haas T, Barkhof F, Van de Ville D, Radu EW, Kressig RW, Haller S (2015) Altered cerebrovascular reactivity velocity in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 36:33–41

    PubMed  Google Scholar 

  135. Cantin S, Villien M, Moreaud O, Tropres I, Keignart S, Chipon E, Le Bas JF, Warnking J, Krainik A (2011) Impaired cerebral vasoreactivity to CO2 in Alzheimer’s disease using BOLD fMRI. Neuroimage 58:579–587

    CAS  PubMed  Google Scholar 

  136. Mugler JPR, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    PubMed  Google Scholar 

  137. Mugler JPR, Brookeman JR (1991) Rapid three-dimensional T1-weighted MR imaging with the MP-RAGE sequence. J Magn Reson Imaging 1:561–567

    PubMed  Google Scholar 

  138. Mugler JPR, Brookeman JR (1993) Theoretical analysis of gadopentetate dimeglumine enhancement in T1-weighted imaging of the brain: comparison of two-dimensional spin-echo and three-dimensional gradient-echo sequences. J Magn Reson Imaging 3:761–769

    PubMed  Google Scholar 

  139. Kakeda S, Korogi Y, Hiai Y, Ohnari N, Moriya J, Kamada K, Hanamiya M, Sato T, Kitajima M (2007) Detection of brain metastasis at 3 T: comparison among SE, IR-FSE and 3D-GRE sequences. Eur Radiol 17:2345–2351

    PubMed  Google Scholar 

  140. Kober T, Granziera C, Ribes D, Browaeys P, Schluep M, Meuli R, Frackowiak R, Gruetter R, Krueger G (2012) MP2RAGE multiple sclerosis magnetic resonance imaging at 3 T. Invest Radiol 47:346–352

    PubMed  Google Scholar 

  141. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R (2010) MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage 49:1271–1281

    PubMed  Google Scholar 

  142. Tanner M, Gambarota G, Kober T, Krueger G, Erritzoe D, Marques JP, Newbould R (2012) Fluid and white matter suppression with the MP2RAGE sequence. J Magn Reson Imaging 35:1063–1070

    PubMed  Google Scholar 

  143. van der Kouwe AJ, Benner T, Salat DH, Fischl B (2008) Brain morphometry with multiecho MPRAGE. Neuroimage 40:559–569

    PubMed Central  PubMed  Google Scholar 

  144. Makabe T, Nakamura M, Moriyama R (2009) Applicability of the 3D-VIBE sequence to whole brain imaging. Nihon Hoshasen Gijutsu Gakkai Zasshi 65:945–951

    PubMed  Google Scholar 

  145. Wetzel SG, Johnson G, Tan AG, Cha S, Knopp EA, Lee VS, Thomasson D, Rofsky NM (2002) Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination. AJNR Am J Neuroradiol 23:995–1002

    PubMed  Google Scholar 

  146. Yu MH, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI (2013) Clinical application of controlled aliasing in parallel imaging results in a higher acceleration (CAIPIRINHA)-volumetric interpolated breathhold (VIBE) sequence for gadoxetic acid-enhanced liver MR imaging. J Magn Reson Imaging

  147. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    CAS  PubMed  Google Scholar 

  148. Lee JK, Dixon WT, Ling D, Levitt RG, Murphy WAJ (1984) Fatty infiltration of the liver: demonstration by proton spectroscopic imaging. Prelim obser Radiol 153:195–201

    CAS  Google Scholar 

  149. Bley TA, Wieben O, Francois CJ, Brittain JH, Reeder SB (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31:4–18

    PubMed  Google Scholar 

  150. Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65:96–107

    PubMed  Google Scholar 

  151. Hernando D, Kellman P, Haldar JP, Liang ZP (2008) A network flow method for improved MR field map estimation in the presence of water and fat. Conf Proc IEEE Eng Med Biol Soc 2008:82–85

    CAS  PubMed  Google Scholar 

  152. Hernando D, Kellman P, Haldar JP, Liang ZP (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63:79–90

    PubMed Central  PubMed  Google Scholar 

  153. Hernando D, Liang ZP, Kellman P (2010) Chemical shift-based water/fat separation: a comparison of signal models. Magn Reson Med 64:811–822

    PubMed Central  PubMed  Google Scholar 

  154. Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C, Liang ZP, Arai AE (2009) Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 61:215–221

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Hu HH, Bornert P, Hernando D, Kellman P, Ma J, Reeder S, Sirlin C (2012) ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med 68:378–388

    PubMed Central  PubMed  Google Scholar 

  156. Aagaard BD, Maravilla KR, Kliot M (1998) MR neurography. MR imaging of peripheral nerves. Magn Reson Imaging Clin N Am 6:179–194

    CAS  PubMed  Google Scholar 

  157. Lichy MP, Wietek BM, Mugler JPR, Horger W, Menzel MI, Anastasiadis A, Siegmann K, Niemeyer T, Konigsrainer A, Kiefer B, Schick F, Claussen CD, Schlemmer HP (2005) Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol 40:754–760

    PubMed  Google Scholar 

  158. Mugler JPR, Bao S, Mulkern RV, Guttmann CR, Robertson RL, Jolesz FA, Brookeman JR (2000) Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 216:891–899

    PubMed  Google Scholar 

  159. Algin O, Hakyemez B, Gokalp G, Ozcan T, Korfali E, Parlak M (2010) The contribution of 3D-CISS and contrast-enhanced MR cisternography in detecting cerebrospinal fluid leak in patients with rhinorrhoea. Br J Radiol 83:225–232

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Poels MM, Ikram MA, Vernooij MW (2012) Improved MR imaging detection of cerebral microbleeds more accurately identifies persons with vasculopathy. AJNR Am J Neuroradiol 33:1553–1556

    CAS  PubMed  Google Scholar 

  161. Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM (2014) Susceptibility-weighted MR imaging of radiation therapy-induced cerebral microbleeds in patients with glioma: a comparison between 3 T and 7 T. Neuroradiology 56:91–96

    PubMed  Google Scholar 

  162. Nabavizadeh SA, Edgar JC, Vossough A (2014) Utility of susceptibility-weighted imaging and arterial spin perfusion imaging in pediatric brain arteriovenous shunting. Neuroradiology 56:877–884

    PubMed  Google Scholar 

  163. Di Ieva A, God S, Grabner G, Grizzi F, Sherif C, Matula C, Tschabitscher M, Trattnig S (2013) Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology 55:35–40

    PubMed  Google Scholar 

  164. Habib CA, Liu M, Bawany N, Garbern J, Krumbein I, Mentzel HJ, Reichenbach J, Magnano C, Zivadinov R, Haacke EM (2012) Assessing abnormal iron content in the deep gray matter of patients with multiple sclerosis versus healthy controls. AJNR Am J Neuroradiol 33:252–258

    CAS  PubMed  Google Scholar 

  165. Haller S, Garibotto V, Kovari E, Bouras C, Xekardaki A, Rodriguez C, Lazarczyk MJ, Giannakopoulos P, Lovblad KO (2013) Neuroimaging of dementia in 2013: what radiologists need to know. Eur Radiol 23:3393–3404

    PubMed  Google Scholar 

  166. Kau T, Taschwer M, Deutschmann H, Schonfelder M, Weber JR, Hausegger KA (2013) The “central vein sign”: is there a place for susceptibility weighted imaging in possible multiple sclerosis? Eur Radiol 23:1956–1962

    PubMed  Google Scholar 

  167. Benson RR, Gattu R, Sewick B, Kou Z, Zakariah N, Cavanaugh JM, Haacke EM (2012) Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation 31:261–279

    PubMed  Google Scholar 

  168. Chastain CA, Oyoyo UE, Zipperman M, Joo E, Ashwal S, Shutter LA, Tong KA (2009) Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. J Neurotrauma 26:1183–1196

    PubMed  Google Scholar 

  169. Park J, Mugler JPR, Horger W, Kiefer B (2007) Optimized T1-weighted contrast for single-slab 3D turbo spin-echo imaging with long echo trains: application to whole-brain imaging. Magn Reson Med 58:982–992

    PubMed  Google Scholar 

  170. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400

    PubMed  Google Scholar 

  171. Cuvinciuc V, Viallon M, Momjian-Mayor I, Sztajzel R, Pereira VM, Lovblad KO, Vargas MI (2013) 3D fat-saturated T1 SPACE sequence for the diagnosis of cervical artery dissection. Neuroradiology 55:595–602

    PubMed  Google Scholar 

  172. Prince MR, Zhang HL, Prowda JC, Grossman ME, Silvers DN (2009) Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics 29:1565–1574

    PubMed  Google Scholar 

  173. Prince MR, Zhang HL, Roditi GH, Leiner T, Kucharczyk W (2009) Risk factors for NSF: a literature review. J Magn Reson Imaging 30:1298–1308

    PubMed  Google Scholar 

  174. Zou Z, Zhang HL, Roditi GH, Leiner T, Kucharczyk W, Prince MR (2011) Nephrogenic systemic fibrosis: review of 370 biopsy-confirmed cases. JACC Cardiovasc Imaging 4:1206–1216

    PubMed  Google Scholar 

  175. Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR (2012) Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:31

    PubMed Central  PubMed  Google Scholar 

  176. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841

    PubMed  Google Scholar 

  177. Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248:20–43

    PubMed  Google Scholar 

  178. Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H (2000) Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin echo. J Magn Reson Imaging 12:776–783

    CAS  PubMed  Google Scholar 

  179. Fan Z, Sheehan J, Bi X, Liu X, Carr J, Li D (2009) 3D noncontrast MR angiography of the distal lower extremities using flow-sensitive dephasing (FSD)-prepared balanced SSFP. Magn Reson Med 62:1523–1532

    PubMed Central  PubMed  Google Scholar 

  180. Edelman RR, Giri S, Dunkle E, Galizia M, Amin P, Koktzoglou I (2013) Quiescent-inflow single-shot magnetic resonance angiography using a highly undersampled radial k-space trajectory. Magn Reson Med 70:1662–1668

    CAS  PubMed  Google Scholar 

  181. Edelman RR, Sheehan JJ, Dunkle E, Schindler N, Carr J, Koktzoglou I (2010) Quiescent-interval single-shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med 63:951–958

    PubMed Central  PubMed  Google Scholar 

  182. Koktzoglou I, Edelman RR (2009) Ghost magnetic resonance angiography. Magn Reson Med 61:1515–1519

    PubMed  Google Scholar 

  183. Lim RP, Hecht EM, Xu J, Babb JS, Oesingmann N, Wong S, Muhs BE, Gagne P, Lee VS (2008) 3D nongadolinium-enhanced ECG-gated MRA of the distal lower extremities: preliminary clinical experience. J Magn Reson Imaging 28:181–189

    PubMed  Google Scholar 

  184. Haneder S, Attenberger UI, Riffel P, Henzler T, Schoenberg SO, Michaely HJ (2011) Magnetic resonance angiography (MRA) of the calf station at 3.0 T: intraindividual comparison of non-enhanced ECG-gated flow-dependent MRA, continuous table movement MRA and time-resolved MRA. Eur Radiol 21:1452–1461

    PubMed  Google Scholar 

  185. Mohrs OK, Petersen SE, Heidt MC, Schulze T, Schmitt P, Bergemann S, Kauczor HU (2011) High-resolution 3D non-contrast-enhanced, ECG-gated, multi-step MR angiography of the lower extremities: comparison with contrast-enhanced MR angiography. Eur Radiol 21:434–442

    PubMed  Google Scholar 

  186. Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, Dunkle EE, Gupta N, Carr JC, Edelman RR (2011) Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology 260:282–293

    PubMed Central  PubMed  Google Scholar 

  187. Koktzoglou I, Gupta N, Edelman RR (2011) Nonenhanced extracranial carotid MR angiography using arterial spin labeling: improved performance with pseudocontinuous tagging. J Magn Reson Imaging 34:384–394

    PubMed  Google Scholar 

  188. Lee YJ, Laub G, Jung SL, Yoo WJ, Kim YJ, Ahn KJ, Kim BS (2011) Low-dose 3D time-resolved magnetic resonance angiography (MRA) of the supraaortic arteries: correlation with high spatial resolution 3D contrast-enhanced MRA. J Magn Reson Imaging 33:71–76

    PubMed  Google Scholar 

  189. Nael K, Moriarty JM, Finn JP (2011) Low dose CE-MRA. Eur J Radiol 80:2–8

    PubMed  Google Scholar 

  190. Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 229:90–100

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G (2001) Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging 13:313–317

    CAS  PubMed  Google Scholar 

  192. Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, Wedeen VJ, Wald LL (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63:569–580

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67:1210–1224

    PubMed Central  PubMed  Google Scholar 

  194. Solomon E, Shemesh N, Frydman L (2013) Diffusion weighted MRI by spatiotemporal encoding: analytical description and in vivo validations. J Magn Reson 232:76–86

    CAS  PubMed  Google Scholar 

  195. Leftin A, Rosenberg JT, Solomon E, Calixto Bejarano F, Grant SC, Frydman L (2014) Ultrafast in vivo diffusion imaging of stroke at 21.1 T by spatiotemporal encoding. Magn Reson Med

  196. Solomon E, Nissan N, Furman-Haran E, Seginer A, Shapiro-Feinberg M, Degani H, Frydman L (2014) Overcoming limitations in diffusion-weighted MRI of breast by spatio-temporal encoding. Magn Reson Med

Download references

Acknowledgments

The authors warmly thank Ioannis Koktzoglou, PhD (NorthShore University Health System, Evanston, IL, USA), for the left and central images in Fig. 19, as well as for letting us use his sequence. The authors also acknowledge Pr Matthias Gunther for providing the 3D GRASE ASL prototype sequence used to aqcuire the image presented in Fig. 11.

Ethical standards and patient consent

We declare that all human studies have been approved by the local Ethics Committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Patient consent was waived due to the retrospective nature of this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magalie Viallon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viallon, M., Cuvinciuc, V., Delattre, B. et al. State-of-the-art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications. Neuroradiology 57, 441–467 (2015). https://doi.org/10.1007/s00234-015-1500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-015-1500-1

Keywords

Navigation