Skip to main content
Log in

Animal studies on the reduction and/or dilution of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) activity in the urinary system

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

To evaluate two methods for decreasing and/or diluting the FDG activity in the urinary system, five rats were intraperitoneally given 1,000 μg/g ofl-lysine 4 times, starting from 60 minutes before iv injection of FDG, and then at 30-minute intervals for 90 minutes. Five rats were used as controls. In a furosemide study, 12 rats were allocated to three groups. Group 1 received iv injection of FDG alone. Group 2 received saline before iv injection of FDG. Group 3 received furosemide (7 mg/kg) and saline (1/30 of body weight). Neither renal uptake nor urinary excretion of FDG had a statistically significant difference: renal uptake; 0.179 ± 0.011 (l-lysine) vs. 0.119 ± 0.003 (control) % kg injected dose/g. The % dose excreted and total urine volume were: 15.0 ± 2.5 to 15.5 ± 2.5 with 2.98 ml (l-lysine), 22.9 ± 1.8 to 24.2 ± 1.5 with 1.41ml (control). The furosemide study revealed a statistically significant difference: Group 1; 7.57 ± 4.73, Group 2; 0.686 ± 0.638, Group 3; 2.37 ± 2.33% kg injected dose/g (p < 0.01 for Group 1 vs. Group 2, p < 0.05 for Group 1 vs. Group 3). While pretreatment withl-lysine or furosemide failed to decrease renal activity of FDG, saline injection without furosemide markedly decreased urinary activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (F-18): nontoxic tracer for rapid tumor detection.J Nucl Med 21: 670–675, 1980.

    PubMed  CAS  Google Scholar 

  2. Larson SM, Weiden PL, Grunbaum Z, et al: Positron imaging feasibility studies. II. Characteristic of deoxyglucose uptake in rodent and canine neoplasms: concise communication.J Nucl Med 22: 875–879, 1981.

    PubMed  CAS  Google Scholar 

  3. Wahl RL, Hutchins G, Liebert M, Grossman HB, Buchsbaum D, Fisher S.18FDG uptake in human tumor xenografts: feasibility studies for cancer imaging.J Nucl Med 31: 912, 1989.

    Google Scholar 

  4. Wahl RL, Kaminski MS, Ethier SP, Hutchins GD. The potential of 2-deoxy-2[18F]fluoro-d-glucose for the detection of tumor involvement in lymph nodes.J Nucl Med 31: 1831–1835, 1990.

    PubMed  CAS  Google Scholar 

  5. Higashi K, Clavo AC, Wahl RL.In vitro assessment of 2-fluoro-2-deoxy-d-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy.J Nucl Med 34: 773–779, 1993.

    PubMed  CAS  Google Scholar 

  6. Whal RL. Positron emission tomography: application in oncology.In: Murray PC, Ell PJ, eds. Nuclear Medicine in Clinical and Treatment. Edinburgh: Churchill Livingstone, pp. 801–820, 1994.

    Google Scholar 

  7. Hamey JV, Wahl RL, Liebert M, Huhl DE, Hutchins GD, Wedemeyer G, et al. Uptake of 2-deoxy,2-(18F)fluoro-d-glucose in bladder cancer: animal localization and initial patient positron emission tomography.J Urol 145: 279–283, 1991.

    Google Scholar 

  8. Kawamura J, Hida S, Yoshida O, Yonekura Y, Senda M, Yamamoto K, et al. Validity of positron emission tomography (PET) using 2-deoxy-2-[18F]fluoro-d-glucose (FDG) in patients with renal cell carcinoma (preliminary report).KAKU IGAKU (Jpn J Nucl Med) 25: 1143–1148, 1988.

    CAS  Google Scholar 

  9. Wahl RL, Hamey J, Hutchins G, Grossman HB. Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-d-glucose: pilot animal and human studies.J Urol 146: 1470–1474, 1991.

    PubMed  CAS  Google Scholar 

  10. Hoh CK, Hawkins RA, Glaspy JA, Dahlbom M, Tse NY, Hoffman EJ, et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-d-glucose.J Compt Assist Tomogr 17: 582–589, 1993.

    Article  CAS  Google Scholar 

  11. Brown RS, Fisher SJ, Wahl RL. Autoradiographic evaluation of the intra-tumoral distribution of 2-deoxy-d-glucose and monoclonal antibodies in xenografts of human ovarian adenocarcinoma.J Nucl Med 34: 75–82, 1993.

    PubMed  CAS  Google Scholar 

  12. Wahl RL, Greenough R, Clark MF, Grossman HB. Initial evaluation of FDG/PET imaging of metastatic testicular neoplasms.J Nucl Med 34: 6p, 1993. (abstract)

  13. Wahl RL, Hutchins GD, Roberts J. FDG PET imaging of ovarian cancer: Initial evaluation in patients.J Nucl Med 32: 982, 1991.

    Google Scholar 

  14. Hammond PJ, Wade AF, Gwilliam ME, Peters AM, Myers MJ, Gilbey SG, et al. Amino acid infusion blocks renal tubular uptake of indium-labelled somatostatin analogue.Br J Cancer 67: 1437–1439, 1993.

    PubMed  CAS  Google Scholar 

  15. Pimm MV, Gribben SJ. Prevention of renal tubule reabsorption of radiometal (indium-111) labelled Fab fragment of a monoclonal antibody in mice by systemic administration of lysine.Eur J Nucl Med 21: 663–665, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Behr TM, Sharkey RM, Juweid ME, Blumenthal RD, Dunn RM, Griffiths GL, et al. Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives.Cancer Res 55: 3825–3834, 1995.

    PubMed  CAS  Google Scholar 

  17. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR. Routine production of 2-deoxy-2-[18F]fluoro-d-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridium resin.Int J Radiat Appl Instrum 17: 273–279, 1990.

    CAS  Google Scholar 

  18. Wahl RL, Hawkins RA, Larson SM, Hendee WR, Coleman RE, Holden RW, et al. Proceedings of a National Cancer Institute workshops: PET in oncology—a clinical research agenda.Radiology 193: 604–606, 1994.

    PubMed  CAS  Google Scholar 

  19. Gallagher BM, Ansari A, Atkins H, Casella V, Christman DR, Fowler JS, et al. Radiopharmaceuticals XXVII.18F-labeled 2-deoxy-2-fluoro-d-glucose as a radiopharma-ceutical for measuring regional myocardial glucose metabolismin vivo: tissue distribution and imaging studies in animals.J Nucl Med 18: 990–996, 1977.

    PubMed  CAS  Google Scholar 

  20. Wahl RL, Kaminski MS, Ethier SP, Hutchins GD. The potential of 2-deoxy-2[18F]fluoro-d-glucose (FDG) for the detection of tumor involvement in lymph nodes.J Nucl Med 31: 1831–1835, 1990.

    PubMed  CAS  Google Scholar 

  21. Morgenson CE, Sølling K. Studies on renal tubular protein reabsorption: partial and near complete inhibition by certain amino acids.Scand J Clin Lab Invest 37: 477–486, 1977.

    Article  Google Scholar 

  22. Schwegler JS, Silbernagl S, Tamarappoo BK, Welbourne TC. Amino acid transport in the kidney.In: Kiberg MS, Haussinger D, eds. Mammalian Amino Acid Transport. New York: Plenum Press, pp. 233–260, 1992.

    Google Scholar 

  23. Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, et al. Molecular biology mammalian glucose transporters.Diabetes Care 13: 198–208, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters.Physiol Rev 74: 993–1026, 1994.

    PubMed  CAS  Google Scholar 

  25. Hediger MA, Turk E, Wright EM. Homology of the human intestinal NaVglucose and Escherichia coli Na+/proline cotransporters.Proc Natl Acad Sci USA 86: 5748–5752, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Ikeda TS, Hwang E-S, Coady MJ, Hirayama BA, Hediger MA, Wright EM. Characterization of a Na+/glucose cotransporter clined from rabbit small intestine.J Membr Biol 110: 87–95, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Cramer SC, Pardridge WM, Hirayama BA, Wright EM. Colocalization of GLUT2 glucose transporter, sodium/ glucose cotransporter, and γ-glutamyl transpeptidase in rat kidney with double-peroxidase immunocytochemistry.Diabetes 42: 766–770, 1992.

    Article  Google Scholar 

  28. Knight T, Sansom S, Weinman EJ. Renal tubular absorption ofd-glucose, 3-O-methyl-d-glucose and 2-deoxy-d-glucose.Am J Physiol 233: F274–277, 1977.

    PubMed  CAS  Google Scholar 

  29. Silverman M, Black J. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.Biochim Biophys Acta 394: 10–30, 1975.

    Article  PubMed  CAS  Google Scholar 

  30. Turner RJ, Silverman M. Sugar uptake into brush border vesicles from normal human kidney.Proc Natl Acad Sci USA 74: 2825–2829, 1977.

    Article  PubMed  CAS  Google Scholar 

  31. Miller JH, Mullin JM, McAvoy E, Kleinzeller A. Polarity of transport of 2-deoxy-d-glucose andd-glucose by cultured renal epithelia (LLC-PK1).Biochim Biophys Acta 1110: 209–217, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. White MF. The transport of cationic amino acids across the plasma membrane of mammalian cells.Biochim Biophys Acta 822: 355–374, 1985.

    PubMed  CAS  Google Scholar 

  33. Dornhorst A, Powell SH, Pensky J. Aggraviation by propranolol of hyperglycemic effect of hydrochlorothiazide in type II diabetics without alternation of insulin secretion.Lancet i: 123–126, 1985.

    Article  Google Scholar 

  34. Struthers AD. The choice of antihypertensive therapy in the diabetic patient.Postgrad Med J 61: 563–569, 1985.

    Article  PubMed  CAS  Google Scholar 

  35. Sandstrom PE, Sehlin J. Furosemide causes acute and longterm hyperglycaemia and reduce glucose tolerance in mice.Acta Physiol Scand 132: 75–81, 1988.

    Article  PubMed  CAS  Google Scholar 

  36. Sandstrom PE, Sehlin J, Amark K. Furosemide treatment causes age-dependent glucose intolerance and islet damage in obese-hyperglycaemic mice.Pharmacol Toxicol 72: 304–309, 1993.

    Article  PubMed  CAS  Google Scholar 

  37. Fuhrman FA. Glycogen, glucose tolerance and tissue metabolism in potassium-depleted rats.Am J Physiol 167: 314–320, 1951.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosuda, S., Fisher, S. & Wahl, R.L. Animal studies on the reduction and/or dilution of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) activity in the urinary system. Ann Nucl Med 11, 213–218 (1997). https://doi.org/10.1007/BF03164766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03164766

Key words

Navigation