Skip to main content
Log in

Evaluation of resting brain conditions measured by two different methods (i.v. and oral administration) with18F-FDG-PET

  • Short Communications
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Our aim was to evaluate regional differences between brain activity in two resting control conditions measured by 3D PET after administration of FDG through either the intravenous (i.v.) or the oral route. Ten healthy male volunteers engaged in the study as the i.v. group (mean age, 26 ±9.3 years, ±S.D.) who received FDG intravenously and another 10 volunteers as the oral group (mean age, 27.9 ±11.3 years, ±S.D.) who received FDG per os. A set of 3D-PET scans (emission and transmission scans) were performed in both groups. To explore possible functional differences between the brains of the two groups, the SPM-96 software was used for statistical analysis. The results revealed that glucose metabolism was significantly higher in the superior frontal gyrus, superior parietal lobule, lingual gyrus and left cerebellar hemisphere in the i.v. group than in the oral group. Metabolically active areas were found in the superior, middle and inferior temporal gyrus, parahippocampal gyrus, amygdaloid nucleus, pons and cerebellum in the oral group when compared with the i.v. group. These differences were presumably induced by differences between FDG kinetics and/or time-weighted behavioral effects in the two studies. This study suggests the need for extreme caution when selecting a pooled control population for designated activation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Fahey FH, Wood FB, Flowers DL, Eades CG. Evaluation of brain activity in FDG-PET studies.J Comput Assist Tomogr 1998; 22 (6): 953–961.

    Article  PubMed  CAS  Google Scholar 

  2. Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age.J Nucl Med 1995; 36 (7): 1141–1149.

    PubMed  CAS  Google Scholar 

  3. Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY. Forebrain activation in REM sleep: an FDG PET study.Brain Res 1997; 770 (1–2): 192–201.

    Article  PubMed  CAS  Google Scholar 

  4. Schreckenberger M, Gouzoulis-Mayfrank E, Sabri O, Arning C, Schulz G, Tuttass T, et al. Cerebral interregional correlations of associative language processing: a positron emission tomography activation study using fluorine-18 fluorodeoxyglucose.Eur J Nucl Med 1998; 25 (11): 1511–1519.

    Article  PubMed  CAS  Google Scholar 

  5. Boivin MJ, Giordani B, Berent S, Amato DA, Lehtinen S, Koeppe RA, et al. Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism.Cortex 1992; 28 (2): 231–291.

    PubMed  CAS  Google Scholar 

  6. Itoh M, Miyazaki H, Tashiro M, Xu-Zhan X. Functional analysis of the brain at rest studied by PET and EEG.J Intl Soc Life Info Sci 1997; 15 (2): 282–287.

    Google Scholar 

  7. Schiltz C, Bodart JM, Dubois S, Dejardin S, Michel C, Roucoux A, et al. Neuronal Mechanisms of Perceptual Learning: Changes in Human Brain Activity with Training in Orientation Discrimination.NeuroImage 1999; 9: 46–62.

    Article  PubMed  CAS  Google Scholar 

  8. Paul TR, Benjamin JZ, Robert DN, Carolyn CM, Mark AM, James TB. Functional Neuroanatomy of Sementic Memory: Recognition of Sementic Associations.NeuroImage 1999; 9: 88–96.

    Article  Google Scholar 

  9. Gereon RF, Douglas RC, Kevin M, Ichiro K, Christian D, Lewis A, et al. Human cerebral activity with increasing inspiratory force: a study using positron emission tomography.J Appl Physiol 1996; 81 (3): 1295–1305.

    Google Scholar 

  10. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS. Statistical parametric maps in functional imaging: A general linear approach.Hum Brain Mapping 1995; 2: 189–210.

    Article  Google Scholar 

  11. Fujiwara T, Watanuki S, Yamamoto S, Miyake M, Seo S, Itoh M, et al. Performance evaluation of a large field-of-view PET scanner: SET-2400W.Ann Nucl Med 1997; 11 (4): 307–313.

    Article  PubMed  CAS  Google Scholar 

  12. Defrise M, Townsend D, Geissbuhler A. Implementation of three-dimensional image reconstruction for multi-ring positron tomographs.Phys Med Biol 1990; 35 (10): 1361–1372.

    Article  PubMed  CAS  Google Scholar 

  13. Friston KJ, Frith CD, Liddle PF. Comparing functional (PET) images: the assessment of significant change.J Cereb Blood Flow Metab 1991; 11: 690–699.

    PubMed  CAS  Google Scholar 

  14. Talairach J, Tournoux P.Co-planner Stereo-taxic Atlas of the Human Brain. Rayport M (translator), Stuttgart: Theim, 1988.

    Google Scholar 

  15. Farrell MA, McAdams HP, Herndon JE, Patz EF Jr. Non-small cell lung cancer: FDG PET for nodal staging in patients with stage I disease.Radiology 2000; 215 (3): 886–890.

    PubMed  CAS  Google Scholar 

  16. Iwata Y, Shiomi S, Sasaki N, Jomura H, Nishiguchi S, Seki S, et al. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors.Ann Nucl Med 2000; 14 (2): 121–126.

    Article  PubMed  CAS  Google Scholar 

  17. Sugawara Y, Daniel KB, Paul VK, Joseph ER, Kenneth RZ, Richard LW. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results.Eur J Nucl Med 1998; 25 (9): 1238–1243.

    Article  PubMed  CAS  Google Scholar 

  18. Reivich M, Gur R, Alavi A. Positron emission tomographic studies of sensory stimuli, cognitive processes and anxiety.Human Neurobiol 1983; 2 (1): 25–33.

    CAS  Google Scholar 

  19. Seibner HR, Peller M, Willoch F, Auer C, Bartenstein P, Drzezga A, et al. Imaging functional activation of the auditory cortex during focal repetitive transcranial magnetic stimulation of the primary motor cortex in normal subjects.Neurosci Lett 1999; 270 (1): 37–40.

    Article  Google Scholar 

  20. Albin RL, Minoshima S, D'Amato CJ, Frey KA, Kuhl DA, Sima AA. Fluorodeoxyglucose positron emission tomography in diffuse Lewy body disease.Neurology 1996; 47 (2): 462–466.

    PubMed  CAS  Google Scholar 

  21. Imamura T, Ishii K, Sasaki M, Kitagaki H, Yamaji S, Hirono N. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography.Neurosci Lett 1997; 235: 49–52.

    Article  PubMed  CAS  Google Scholar 

  22. Martinez ZA, Colgan M, Baxter LR Jr, Quintana J, Siegel S, Arion C, et al. Oral18F-fluoro-2-deoxyglucose for primate PET studies without behavioral restraint: demonstration of principle.Am J Primatol 1997; 42 (3): 215–224.

    Article  PubMed  CAS  Google Scholar 

  23. Turkington TG, Coleman RE. An evaluation of Post-Injection Transmission Measurement in PET1.IEEE Trans Nucl Sci 1994; 41 (4): 1538–1544.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehedi Masud M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masud, M., Yamaguchi, K., Rikimaru, H. et al. Evaluation of resting brain conditions measured by two different methods (i.v. and oral administration) with18F-FDG-PET. Ann Nucl Med 15, 69–73 (2001). https://doi.org/10.1007/BF03012136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03012136

Key words

Navigation