Skip to main content
Log in

Clinical cardiac PET using generator-produced Rb-82: A review

  • Review
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Cardiac positron emission tomography (PET) with generator-produced rubidium-82 (Rb-82) provides information not previously available for optimal diagnosis and management of cardiac disease. This new information includes the accurate, noninvasive diagnosis of coronary artery disease in asymptomatic or symptomatic patients, the noninvasive assessment of coronary stenosis severity, myocardial infarct imaging, myocardial viability, collateral function, and cardiomyopathy. Cardiac positron imaging may be carried out economically at the same or less cost as other high-tech diagnostic imaging but provides perfusion and metabolic information quantitatively for routine clinical studies not available by other diagnostic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. National Institutes of Health (1983) Exercise and your heart. Publication No. 83-1677

  2. Midwall J, Ambrose J, Pichard A, Abedin Z, Herman MV (1982) Angina pectoris before and after myocardial infarction. Chest 81:681–686

    PubMed  CAS  Google Scholar 

  3. Reunanen A, Aromaa A, Pyorala K, Punsar S, Maatela J, Knekt P (1983) The Social Insurance Institution's coronary heart disease study: Baseline data and 5-year mortality experience. Acta Med Scand (Suppl) 673:67–81

    Google Scholar 

  4. Kannel WB, Abbott RD (1984) Incidence and prognosis of unrecognized myocardial infarction. An update on the Framingham Study. N Engl J Med 311:1144–1147

    Article  PubMed  CAS  Google Scholar 

  5. Lown B (1979) Sudden cardiac death: the major challenge confronting contemporary cardiology. Am J Cardiol 43:313–328

    Article  PubMed  CAS  Google Scholar 

  6. Langou RA, Huang EK, Kelley MJ, Cohen LS (1980) Predictive accuracy of coronary artery calcification and abnormal exercise test for coronary artery disease in asymptomatic men. Circulation 62(6):1196–1203

    PubMed  CAS  Google Scholar 

  7. Olofsson BO, Bjerle P, Aberg T, Osterman G, Jacobsson KA (1985) Prevalence of coronary artery disease in patients with valvular heart disease. Acta Med Scand 218:365–371

    Article  PubMed  CAS  Google Scholar 

  8. Maddahi J, Garcia EV, Berman DS, Waxman A, Swan HJC, Forrester J (1981) Improved noninvasive assessment of coronary artery disease by quantitative analysis of regional stress myocardial distribution and washout of thallium-201. Circulation 64:924–935

    PubMed  CAS  Google Scholar 

  9. DePasquale EE, Nody AC, DePuey EG, Garcia EV, Pilcher G, Bredlau C, Roubin G, Gober A, Gruentzig A, D'Amato P, Berger HJ (1987) Quantitative rotational thallium-201 tomography for identifying and localizing coronary artery disease. Circulation 77:316–327

    Google Scholar 

  10. Van Train KF, Berman DS, Garcia EV, Berger HJ, Sands MJ, Friedman JD, Freeman MR, Pryzlak M, Ashburn WL, Norris SL, Green AM, Maddahi J (1986) Quantitative analysis of stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 27:17–25

    PubMed  Google Scholar 

  11. Ranhosky A, Gerlag DM (1988) Quantitative interpretation provides no advantage over qualitative interpretation in intravenous dipyridamole thallium imaging. Circulation 432:78(II)

    Google Scholar 

  12. Nolewajka AJ, Kostuk WJ, Howard J, Rechnitzer PA, Cunningham DA (1981) 201-thallium stress myocardial imaging: An evaluation of fifty-eight asymptomatic males. Clin Cardiol 4:134–138

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz RS, Jackson WG, Celio PV, Hickman JR (1988) Exercise thallium-201 scintigraphy for detecting coronary artery disease in asymptomatic young men. J Am Coll Cardiol 11:80A

    Google Scholar 

  14. Bungo MW, Leland OS (1983) Discordance of exercise thallium testing with coronary arteriography in patients with atypical presentations. Chest 83:112–116

    PubMed  CAS  Google Scholar 

  15. Uhl GS, Groelicher V (1983) Screening for asymptomatic coronary artery disease. J Am Coll Cardiol 1:946–955

    Article  PubMed  CAS  Google Scholar 

  16. Gould KL (in press) How accurate is thallium exercise testing? J Am Coll Cardiol

  17. Gould KL (in press) Goals, gold standards and accuracy of noninvasive stress perfusion imaging. Current Opinion in Cardiology

  18. Gould KL (in Press), PET, PTCA and economic priorities. Clin Cardiol

  19. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 33:87–94

    Article  PubMed  CAS  Google Scholar 

  20. Gould KL, Hamilton GW, Lipscomb K, Kennedy JW (1974) A method for assessing stress-induced regional malperfusion during coronary arteriography: Experimental validation and clinical application. Am J Cardiol 34:557–564

    Article  PubMed  CAS  Google Scholar 

  21. Gould KL (1978) Noninvasive assessment of coronary stenosis by myocardial perfusion imaging during pharmacologic coronary vasodilation. I. Am J Cardiol 41:267–278

    Article  PubMed  CAS  Google Scholar 

  22. Gould KL, Westcott RJ, Albro PC, Hamilton GW (1978) Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic vasodilation. II. Clinical methodology and feasibility. Am J Cardiol 41:279–287

    Article  PubMed  CAS  Google Scholar 

  23. Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL (1978) Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. III. Clinical trial. Am J Cardiol 42:751–760

    Article  PubMed  CAS  Google Scholar 

  24. Gould KL (1978) Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. IV. Limits of stenosis detection by idealized experimental cross-sectional myocardial imaging. Am J Cardiol 42:761–768

    Article  PubMed  CAS  Google Scholar 

  25. Gould KL, Schelbert HR, Phelps ME, Hoffman EJ (1979) Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilation. V. Detection of 47% diameter coronary stenosis with intravenous N-13 ammonia and positron emission tomography in intact dogs. Am J Cardiol 43:200–208

    Article  PubMed  CAS  Google Scholar 

  26. Schelbert HR, Wisenberg G, Phelps ME (1982) Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous13NH3 and positron computed tomography. Am J Cardiol 49:1197–1207

    Article  PubMed  CAS  Google Scholar 

  27. Kirkeeide R, Gould KL, Parsel L (1986) Assessment of coronary stenoses by myocardial imaging during coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated measure of stenosis severity accounting for all it's geometric dimensions. JACC 7:103–113

    PubMed  CAS  Google Scholar 

  28. Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong WH, Tewson TJ, Berridge MS, Bolomey LA, Hartz RK, Smalling RW, Fuentes F, Nishikawa A (1986) Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol 7:775–789

    Article  PubMed  CAS  Google Scholar 

  29. Gould KL. (1988) Identifying and measuring severity of coronary artery stenosis. Quantitative coronary arteriography and positron emission tomography. Circulation 68:237–245

    Google Scholar 

  30. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL (1989) Diagnosis of coronary artery disease by positron emission tomography: Comparison to quantitative coronary arteriography in 193 patients. Circulation 79:825–835

    PubMed  CAS  Google Scholar 

  31. Hicks K, Ganti G, Mullani N, Gould KL (in press) Automated quantitation of 3-D cardiac PET for routine clinical use. J Nuc Med

  32. Gould KL, Goldstein RA, Mullani NA (1989) Economic analysis of clinical positron emission tomography of the heart with Rubidium-82. J Nucl Med 30:707–717

    PubMed  CAS  Google Scholar 

  33. Deanfield JE, Shea M, Ribiero P, de Landsheere CM, Wilson RA, Horlock P, Selwyn AP (1984) Transient ST-segment depression as a marker of myocardial ischemia during daily life. Am J Cardiol 54:1195–1200

    Article  PubMed  CAS  Google Scholar 

  34. Deanfield JE, Kensett M, Shea M, Horlock P, Wilson RA, de Landsheere CM, Selwyn AP (1984) Silent myocardial ischemia due to mental stress, Lancet 2:1001–1005

    Article  PubMed  CAS  Google Scholar 

  35. Selwyn AP, Allan RM, L'Abbate AL, Horlock P, Camici P, Clark J, O'Brien HA, Grant PM (1982) Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 50:112–121

    Article  PubMed  CAS  Google Scholar 

  36. Goldstein RA, Kirkeeide RL, Demer L, Merhige M, Nishikawa A, Smalling RW, Mullani NA, Gould KL (1987) Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest 79:1473–1478

    PubMed  CAS  Google Scholar 

  37. Goldstein RA, Mullani NA, Wong WH, Hartz RK, Hicks CH, Fuentes F, Smalling RW, Gould KL (1986) Positron imaging of myocardial infarction with rubidium-82. J Nuc Med 27:1824–1829

    CAS  Google Scholar 

  38. Goldstein RA, Kirkeeide RL, Nishikawa A, Smalling RW, Demer L, Merhige M, Mullani NA, Gould KL (1987) Improvement in coronary flow reserve after coronary angioplasty as assessed with positron tomography. J Nucl Med 28:1262–1267

    PubMed  CAS  Google Scholar 

  39. Kehtarnavaz N, DeFigueiredo RJP (1984) A novel surface reconstruction and display method for cardiac PET imaging. IEEE Trans on Medical Imaging MI-3(3):108–115

    CAS  Google Scholar 

  40. Demer L, Goldstein R, Mullani N, Kirkeeide RL, Smalling R, Nishikawa A, Fuentes F, Gould KL (in press) Coronary steal by noninvasive PET identifies collateralized myocardium. J Nuc Med

  41. Demer L, Gould KL, Kirkeeide RL (1988) Assessing stenosis severity: Coronary flow reserve collateral function, quantitative coronary arteriography, positron imaging, and digital subtraction angiography. A review and analysis. Prog CV Dis 30:307–322

    Article  CAS  Google Scholar 

  42. Gould KL (in press). Coronary steal. Is it clinically important? Chest

  43. Goldstein RA, Mullani NA, Fisher D, Marani S, Gould KL, O'Brien HA (1983) Myocardial perfusion with rubidium-82. II. The effects of metabolic and pharmacologic interventions. J Nucl Med 24:907–915

    PubMed  CAS  Google Scholar 

  44. Mullani NA, Goldstein RA, Gould KL, Fisher DJ, Marani SK, O'Brien HA (1983) Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 24:898–906

    PubMed  CAS  Google Scholar 

  45. Mullani NA, Gould KL (1983) First pass regional blood flow measurements with external detectors. J Nucl Med 24:577–581

    PubMed  CAS  Google Scholar 

  46. Goldstein RA (1985) Kinetics of rubidium-82 after coronary occlusion and reperfusion. J Clin Invest 75:1131–1137

    PubMed  CAS  Google Scholar 

  47. Gould KL, Gordon DG (in press). PET and clinical cardiology. Prog in Cardiol

  48. Gould KL (1989) Why PET and PTCA—Imaging for the interventionist. J Invasive Cardiol 1:59–67

    Google Scholar 

  49. Senda M, Yonekura Y, Tamaki N, Tanaka Y, Komori M, Minato K, Konishi Y, Torizuka K (1985) Axial resolution and the value of interpolating scan in multislice positron computed tomography. IEEE Trans Med Imaging MI-4 (1):44–51

    CAS  Google Scholar 

  50. Mullani NA, Gould KL, Hartz RK, Hitchens RE, Wong WH, Bristow D, Adler S, Philippe E, Bendriem B, Sanders M, Gibbs B (in press) Design and performance of Posicam 6.5 BGO Positron Camera. J Nucl Med

  51. Wong WH, Mullani NA, Phillipe EA, Hartz RK, Gould KL (1983) Image improvement and design optimization of the Time-of-Flight PET, J Nucl Med 24:52–60

    PubMed  CAS  Google Scholar 

  52. Mullani N, Wong WH, Hartz RK, Philippe EA, Yerian K (1982) Sensitivity improvement of TOFPET by the utilization of the interslice coincidence. IEEE Trans Nucl Sci NS-29 (1):479–483

    Google Scholar 

  53. Mullani NA, Ficke DC, Hart RK, Markham J, Wong WH (1981) System design of fast PET scanners utilizing time-of-flight. IEEE Trans Nucl Sci NS-28(1):104–108

    Article  Google Scholar 

  54. Mullani NA, Gaeta J, Yerian K, Wong WH, Hartz RK, Phillipe EA, Bristow D, Gould KL (1984) Dynamic imaging with high resolution time-of-flight PET camera—TOFPET I. IEEE Trans Nucl Sci NS-31(1):609–613

    Google Scholar 

  55. Wong WH, Mullani NA, Wardworth G, Hartz RK, Bristow D (1984) Characteristics of small barium fluoride (BaF2) scintillator for high intrinsic resolution time-of-flight positron emission tomography. IEEE Trans Nucl Sci NS-31(1):381–386.

    Google Scholar 

  56. Yano Y, Chu P, Budinger TF, Grant PM, Ogard AE, Barnes JW, O'Brien HA, Hoop B (1977) Rubidium-82 generators for imaging studies. J Nucl Med 18:46–50

    PubMed  CAS  Google Scholar 

  57. Yano Y, Budinger TF, Chiang G, O'Brien HA, Grant PM (1979) Evaluation and application of alumina-based Rb-82 generators charged with high levels of Sr-82/85. J Nucl Med 20:961–966

    PubMed  CAS  Google Scholar 

  58. Yano Y, Carhoon JL, Budinger TF (1981) A precision flow-controlled Rb-82 generator for bolus or constant-infusion studies of the heart and brain. J Nucl Med 22:1006–1010

    PubMed  CAS  Google Scholar 

  59. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE (1979) Regional myocardial perfusion assessed with N-13 labeled ammonia and position emission computerized axial tomography. Am J Cardiol 43:209–218

    Article  PubMed  CAS  Google Scholar 

  60. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, Kuhl DE (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272

    PubMed  CAS  Google Scholar 

  61. Schwaiger M, Brunken R, Grover-McKay M, Krivokapich J, Child J, Tillisch JH, Phelps ME, Schelbert HR (1986) Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 8:800–808

    Article  PubMed  CAS  Google Scholar 

  62. Marshal RC, Tillisch JH, Phelps ME, Huang SC, Carson R, Henze E, Schelbert HR (1983) Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography,18F-labeled fluoro-deoxyglucose and N-13 ammonia. Circulation 67:766–778

    Google Scholar 

  63. Tillisch J, Brunken R, Marshal RC Schwaiger M, Mandelkern M, Phelps M, Schelbert H (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314:884–888

    Article  PubMed  CAS  Google Scholar 

  64. Brunken R, Tillisch JH, Schwaiger M, Child JS, Marshall R, Mandelkern M, Phelps ME, Schelbert HR (1986) Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q-wave infarctions: Evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 73:951–963

    PubMed  CAS  Google Scholar 

  65. Paans AMJ, Vaalburg W, Woldring MG (1985) A comparison of the sensitivity of PET and NMR for in vivo quantitative metabolic imaging. Eur J Nucl Med 11:73–75

    Article  PubMed  CAS  Google Scholar 

  66. Miller DD, Holmbang G, Gill JB, Dragotakes D, Kantor HL, Okada RD, Brady TJ (1986) Detection of coronary stenoses by continuous paramagnetic contrast infusion during dipyridamole-induced hyperemia: The nuclear magnetic resonance imaging “stress test” (Abstract). Circulation 74:II-319

    Google Scholar 

  67. Wolfkiel CJ, Ferguson JL, Chomka EV, Labin IN, Tenzer ML, Brundage BH (1986) Myocardial blood flow determined by ultrafast computed tomography (Abstract), Circulation 74:II-122

    Google Scholar 

  68. Smalling RW (1983) The SPECTrum of thallium-201 imaging in coronary artery disease. J Nucl Med 24:854–858

    PubMed  CAS  Google Scholar 

  69. Maddahi J, Van Train KF, Rozanski A, Wong C, Prigent F, O'Byrne GT, Friedman JD (1986) Is TI-201 single photon emission computerized tomography (SPECT) superior to planar imaging for evaluation of coronary artery disease (Abstract). Circulation 74:II-61

    Google Scholar 

  70. Tamaki N, Yonekura Y, Senda M, Yamashita K, Koide H, Saji H, Hashimoto T, Fudo T, Kambara H, Kawai C, Konishi J (1988) Value and limitations of stress thallium-201 SPEC tomography: Comparison with Nitrogen-13 ammonia positron tomography. J Nucl Med 29:1181–1188

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, K.L. Clinical cardiac PET using generator-produced Rb-82: A review. Cardiovasc Intervent Radiol 12, 245–251 (1989). https://doi.org/10.1007/BF02575408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575408

Key words

Navigation