Skip to main content
Log in

Hormesis: are low doses of ionizing radiation harmful or beneficial?

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A review is provided of the literature on radiation hormesis, hormesis being any physiological effect that occurs at low doses and which cannot be anticipated by extrapolating from toxic effects noted at high doses. Epidemiological studies suggesting beneficial effects are considered, and experimental evidence for the existence of hormesis is then appraised. In the latter context, there are possible low-dose effects at the molecular level, at the cellular level and on the organism as a whole. It is concluded that while it is difficult to analyse the effects of low-dose radiation with statistical significance, the concept does permit the reconsideration of the validity of currently accepted notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz E. Some biological effects of long continued irradiation.Am J Roentgenol 1950; 63: 176.

    Google Scholar 

  2. Sagan LA. What is hormesis and why haven't we heard about it before?Health Phys 1987; 52: 521–525.

    PubMed  Google Scholar 

  3. Stebbing A. Hormesis, the stimulation of growth by low levels of inhibitors.Sci Total Environ 1982; 22: 213.

    PubMed  Google Scholar 

  4. Abbat JD, Hamilton TR, Weeks, JL. Epidemiological studies in three corporations covering the Canadian nuclear fuel cycle.Biological effects of low level radiation. IAEA: Vienna, 1983: 351.

    Google Scholar 

  5. Kendall GM, Muirhead CR, Macgibbon BH, O'Hagan JA, Conquest AJ, Goodhill AA, Butland BK, Fell TP, Jackson DA, Webb MA, Haylock RGE, Thomas JM, Silk TJ.First analysis of the national registry for radiation workers. Occupational exposure to ionizing radiation and mortality. NRPB: Chilton, Didcot, UK; 1992: NRPB-R251.

    Google Scholar 

  6. Luxin W, etal. Epidemiological investigation of radiological effects in high background radia,1iion areas of Yangjiang, China.J Radiat Res 1990; 31: 119–136.

    PubMed  Google Scholar 

  7. Tietjen GL. Plutonium and lung cancer.Health Phys 1987; 52: 625–628.

    PubMed  Google Scholar 

  8. Nambi KSV, Soman SD. Environmental radiation and cancer in India.Health Phys 1987; 52: 653–657.

    PubMed  Google Scholar 

  9. Hickey RJ, Bowers EJ, Spence DE, Zemel BS, Clelland AB, Clelland RC. Low level ionizing radiation and human mortality: multiregional epidemiological studies.Health Phys 1981; 40: 207–219.

    Google Scholar 

  10. Kato H, Schull WJ, Awa A, Akiyama M, Otake M. Dose-response analyses among atomic bomb survivors exposed to low level radiation.Health Phys 1987; 52: 645–652.

    PubMed  Google Scholar 

  11. Mine M, Okumura Y, Ichimart M, Nakumura T, Kondo S. Apparently beneficial effect of low to intermediate doses of A-bomb radiation on human life span.Int J Radiat Biol 1990; 58: 1035–1043.

    PubMed  Google Scholar 

  12. Cohen BL, Colditz GA. Tests of the linear-threshold theory for lung cancer induced by exposure to radon.Environ Res 1994;64:65–89.

    PubMed  Google Scholar 

  13. BEIR. Report, US National Academy of Sciences Committee on Biological Effects of Ionizing Radiation, Washington D.C.Health risks of radon and other internally deposited alpha emitters (BEIR-IV). Washington D.C.: National Academy Press, 1988.

    Google Scholar 

  14. Haynes RM. The distribution of domestic radon concentrations and lung cancer mortality in England and Wales.Radiat Prot Dosim 1988; 25: 93–96.

    Google Scholar 

  15. Cameron J. The good news about low level radiation exposure: health effects of low level radiation in shipyard workers.Health Phys Soc Newsletter 1992; 20: 9.

    Google Scholar 

  16. Craig L, Seidman H. Leukemia and Lymphoma mortality in relation to cosmic radiation.Blood 1961; 17:319.

    PubMed  Google Scholar 

  17. Frigerio NA, Stowe RS. Carcinogenic and genetic hazard from background radiation.Biological and environmental effects of low level radiation, (International Atomic Energy Agency, Vienna, 1976; 2: 285.

    Google Scholar 

  18. Cohen JJ. Natural Background as indicator of radiation induced cancer.Proc. 5th Int. Radiat. Assoc, Jerusalem, 1980.

  19. Webster EW. The effects of low doses of ionizing radiation.J. Tenn. Med. Assoc. 1983; 76: 499.

    PubMed  Google Scholar 

  20. Miller AB, Howe GR, Sherman GJ, Lindsay JP, Yaffe MJ, Dinner PJ, Risch HA, Preston L. Mortality from breast cancer after irradiation during fluoroscopic examinations in patients being treated for tuberculosis.N Engl J Med 1989; 321: 1285–1289.

    PubMed  Google Scholar 

  21. Pollycove M. Positive effects of low level radiation in human populations. In: Calabrese EJ (ed)Biological effects of low level exposures: dose-response relationships. London: CRC Press; 1994: 171–187.

    Google Scholar 

  22. Macklis RM, Beresford B. Radiation hormesis.J Nucl Med 1991;32:350–359.

    PubMed  Google Scholar 

  23. Wolff S. Are radiation-induced effects hormetic?Science 1989;245:575,621.

    PubMed  Google Scholar 

  24. Olivieri G, Bodycote J, Wolff S. Adaptive response of human lymphocytes to low concentrations of radioactive thymine.Science 1984; 233: 594–597.

    Google Scholar 

  25. Shadley JD, Wolff S. Very low doses of X-rays can cause human lymphocytes to become less susceptable to ionizing radiation.Mutagenesis 1987; 2: 95–96.

    PubMed  Google Scholar 

  26. Wolff S, Wiencke JK, Afzal V, Youngblom J, Cortés F. The adaptive response of human lymphocytes to very low doses of ionizing radiation: a case of induced chromosomal repair with the induction of specific proteins. In: Baverstock KM, Stather JW (eds)Low dose radiation: biological bases of risk assessment. London: Taylor and Francis; 1989: 446–454.

    Google Scholar 

  27. Feinendegen LE, Muhlensiepen H, Bond VP, Sondhaus CA. Intracellular stimulation of biochemical control mechanisms.Health Phys 1987; 52: 663–669.

    PubMed  Google Scholar 

  28. Luckey TD. Physiological benefits from low levels of ionizing radiation.Health Phys 1982; 43: 771–789.

    PubMed  Google Scholar 

  29. Liu SZ, Liu WH, Sun JB. Radiation hormesis: its expression in the immune system.Health Phys 1987; 52: 579–584.

    PubMed  Google Scholar 

  30. He WH, Feng RL, Liang JY, Chen MZ, Chen L, Li RB, Zhang GM. Survey of cancer mortality rate among inhabitants of high background area in Guangdong.Chinese J Radiol Med Protection 1985; 5: 109–115.

    Google Scholar 

  31. Zhai SJ, Lin XJ, Pan TM, He WH, Feng RL, Chen MZ, Li SH, Chen L, Li RB, Yie HX. A preliminary report on the survey of cancer mortality in high background area 1970–1980.Chinese J Radiol Med Protection 1982; 2: 48–56.

    Google Scholar 

  32. Bloom ET, Akiyama M, Kusunoki Y, Makinodan T. Delayed effects of low-dose radiation on cellular immunity in atomic bomb survivors residing in the United States.Health Phys 1987;52:585–591.

    PubMed  Google Scholar 

  33. Leonard A, Delpoux M, Meyer R, Decat G, Leonard ED. Effect of an enhanced natural radioacivity on mammal fertility.Sci Total Environ 1985; 45: 535–542.

    PubMed  Google Scholar 

  34. Meyer MB, Tonascia J. Long term effects of prenatal X-ray of human females. 11. Growth and development.Am J Epidemiol 1981;114:317–336.

    PubMed  Google Scholar 

  35. Planel H, Soleilhavoup JP, Tixador R, Richoilley A, Conter A, Croute F, Caratero C, Gaubin Y. Influence on cell proliferation of background radiation or exposure to very low, chronic y radiation.Health Phys 1987; 52: 571–578.

    PubMed  Google Scholar 

  36. Richoilley G, Tixador R, Gasset G, Templier J, Planel H. Preliminary results of the “paramecium” experiment.Naturwissenschaften 1986; 73: 404.

    PubMed  Google Scholar 

  37. Fabrikant JI. Adaptation of cell renewal systems under continuous irradiation.Health Phys 1987; 52: 561–571.

    PubMed  Google Scholar 

  38. Harman D. Free radical theory of ageing. In: Johnson JE Jr, Walford R, Harman D, Miquel J, (eds)Free radicals, ageing, and degenerative diseases. New York: Alan R. Liss; 1986: 3–49.

    Google Scholar 

  39. Totter JR. Physiology of the hormetic effect.Health Phys 1987;52:549–551.

    PubMed  Google Scholar 

  40. Totter JR. Food restriction, ionizing radiation, and natural selection.Mech Ageing Dev 1985; 30:261.

    PubMed  Google Scholar 

  41. Congdon CC. A review of certain low level ionizing radiation studies in mice and guinea pigs.Health Phys 1987; 52: 593–597.

    PubMed  Google Scholar 

  42. Mays CW, Lloyd RD, Taylor GN, Wrenn ME. Cancer incidence and life span vsα-particle dose in beagles.Health Phys 1987;52:617–625.

    PubMed  Google Scholar 

  43. Matanoski GM, Sternberg A, Elliot EA. Does radiation exposure produce a protective effect among radiologists?Health Phys 1987; 52: 637–644.

    PubMed  Google Scholar 

  44. Moghissi AA, Ray DL. Radiation and cancer risk. Letter.Health Phys 1988; 54: 473.

    PubMed  Google Scholar 

  45. Gofman JW. Health effects of ionizing radiation: Dr Sagan's paradigms [letter].Health Phys 1987; 52: 679.

    PubMed  Google Scholar 

  46. Sagan LA. Reply to Dr. Gofman's comments on the health effects of ionizing radiation [letter].Health Phys 1987; 52: 680.

    Google Scholar 

  47. Hart G. Why is zero radiation considered good? [letter].Nucl Med Commun 1993; 14: 506–507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Wyngaarden, K.E., Pauwels, E.K.J. Hormesis: are low doses of ionizing radiation harmful or beneficial?. Eur J Nucl Med 22, 481–486 (1995). https://doi.org/10.1007/BF00839064

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00839064

Key words

Navigation