RT Journal Article SR Electronic T1 Improved Delineation of Parathyroid Lesions in Patients with Chronic Renal Failure Using Magnified Pinhole Imaging JF Journal of Nuclear Medicine Technology JO J. Nucl. Med. Technol. FD Society of Nuclear Medicine SP 35 OP 39 DO 10.2967/jnmt.110.076984 VO 39 IS 1 A1 Layla Ali A1 Issa Loutfi A1 Gautam Biswas A1 Nadia Hadi A1 Tamer Girgis YR 2011 UL http://tech.snmjournals.org/content/39/1/35.abstract AB 99mTc-sestamibi dual-phase scintigraphy is currently established for parathyroid localization. However, the imaging technique is not standardized, and the role of the pinhole collimator, especially, is not fully recognized in the imaging protocol. The aim of this study was to check whether the use of a pinhole collimator in parathyroid scintigraphy would enhance lesion detectability and delineation more than does a parallel-hole collimator or SPECT in patients with secondary hyperparathyroidism due to chronic renal failure with a mixed pattern of abnormalities. Methods: Thirty-five patients referred for a parathyroid scan were included. Imaging was performed at 10 min and 2 h after injection of 925 MBq (25 mCi) of 99mTc-sestamibi using both a pinhole collimator and a high-resolution parallel-hole collimator fitted to a scintillation camera. SPECT was also performed at 1.5 h after injection. The images were reviewed by 2 experienced nuclear medicine physicians, and the results were analyzed. In addition, the contrast of visualized lesions was evaluated. Results: Twenty-three patients (65.7%) had abnormal scan findings. The McNemar test revealed better detection of parathyroid lesions using pinhole imaging than with planar parallel-hole imaging and SPECT (P < 0.001 and P < 0.03, respectively). Both observers showed good agreement in evaluating different imaging techniques (κ = 0.76). Observers were in favor of pinhole imaging because SPECT suffered from noise. Lesion contrast was significantly higher in pinhole imaging than in parallel-hole imaging and SPECT (P < 0.05), with a 16% and 11% improvement in contrast, respectively. Conclusion: Pinhole imaging better delineates and detects lesions in parathyroid scintigraphy than does parallel-hole imaging and SPECT. Pinhole imaging increases confidence in image interpretation because of high lesion contrast and better magnification and resolution. The use of this technique is therefore recommended as part of the routine imaging protocol for 99mTc-sestamibi parathyroid scintigraphy.