RT Journal Article
SR Electronic
T1 Minimum Detectable Defect Thickness in SPECT Myocardial Perfusion Test: Phantom Study with 99mTc and 201Tl
JF Journal of Nuclear Medicine Technology
JO J. Nucl. Med. Technol.
FD Society of Nuclear Medicine
SP 183
OP 188
VO 29
IS 4
A1 Elkamhawy, Abdelhamid A.
A1 Chandna, Harish
YR 2001
UL http://tech.snmjournals.org/content/29/4/183.abstract
AB Objective:The purpose of this study was to determine experimentally the minimum thickness (Dmin) of a defect inserted on the myocardial wall of a cardiac phantom at different locations that could be clearly detected in a SPECT perfusion study using 99mTc and 201Tl. Methods:Rectangular (or cylindrical) defects with the same thickness were inserted on the inner surface of a myocardial phantom at 5 different locations: anterior (ANT), septal (SEP), inferoposterior (IP), lateral (LAT), and apical (AP). For different defect thickness (from 1 to 7 mm, in increments of 1 mm) the myocardial SPECT perfusion study was performed with 99mTc and 201Tl using the same protocol that we use for patients. Baseline studies (with no defect inserted) were also performed. The SPECT images of the myocardial phantom with defects were compared with baseline SPECT images to determine whether the defect could be clearly identified. Results:The uniformity of the baseline SPECT images was analyzed very carefully where an IP artifact was detected. The Dmin was determined for 99mTc and 201Tl at 3 radii of rotation: 21.0, 25.0, and 29.2 cm. Conclusion:To be detected on SPECT images, a defect must be of a thickness ≥Dmin. A simple method for performing a quality control test for SPECT nuclear cardiology can be developed based on these findings.