RT Journal Article SR Electronic T1 Continuous bed motion in a silicon photomultiplier-based scanner provides equivalent spatial resolution and image quality in whole body PET images at similar acquisition times using the step-and-shoot method JF Journal of Nuclear Medicine Technology JO J. Nucl. Med. Technol. FD Society of Nuclear Medicine SP jnmt.121.263240 DO 10.2967/jnmt.121.263240 A1 Kodai Kumamoto A1 Hideaki Sato A1 Yuji Tsutsui A1 Shinichi Awamoto A1 Yasuo Yamashita A1 Shingo Baba A1 Masayuki Sasaki YR 2022 UL http://tech.snmjournals.org/content/early/2022/04/19/jnmt.121.263240.abstract AB This study investigated the spatial resolution and image quality of the continuous bed motion (CBM) method in a sensitive silicon photomultiplier (SiPM)-based positron emission tomography (PET)/computed tomography (CT) system compared with the traditional step-and-shoot (SS) method. Methods: Siemens Biograph Vision was used in this study. Data acquisition using the SS method was performed for 3 min per bed. In the CBM method, the bed speed ranged from 0.5 to 3.3 mm/s. The acquisition time equivalent to the SS method was 1.1 mm/s for 2-bed ranges and 0.8 mm/s for seven-bed ranges. The spatial resolution was investigated using 18F point sources and evaluated using the full width at half maximum. Image quality was investigated using a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with six spheres 10-, 13-, 17-, 22-, 28-, and 37-mm inner diameters. The radioactivity concentration ratio of the 18F solution in all spheres and the background was approximately 4:1. The detectability of each sphere was visually evaluated on a five-step score. Image quality was physically evaluated using the noise equivalent count rate (NECphantom), contrast percentage of the 10-mm hot sphere (QH,10mm), background variability percentage (N10mm), and contrast–noise ratio (QH,10mm/N10mm). Results: The spatial resolution was not affected by the difference of acquisition methods and bed speeds. The detectability of the 10-mm sphere with a bed speed of 2.2 mm/s or faster was significantly inferior to that of the SS 2-bed method. In evaluating image quality, no significant difference in the contrast percentage was observed among the acquisition methods and speeds in the CBM method. However, the increasing bed speed in the CBM method increased the N10mm and decreased the NECphantom. When comparing the SS 2-bed method with the CBM method at 0.8 mm/s, no significant differences in all parameters were observed. Conclusion: In a SiPM-based PET/CT scanner, the CBM method provides equivalent spatial resolution and image quality in whole body PET images with same acquisition time using the SS method.