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ABSTRACT 

 

INTRODUCTION: 18F-FDG PET/CT whole-body tumor burden in lymphoma is not 

routinely performed due to the lack of fast quantification methods. Although the semi-

automatic method is fast, it still lacks the necessary speed required to quantify tumor 

burden in daily clinical practice.  

PURPOSE: To evaluate the performance of the convolutional neural networks 

(CNN) software to localize neoplastic lesions in whole-body 18F-FDG PET/CT 

images of pediatric lymphoma patients. 

METHODS: This retrospective image data set, derived from the data pool under the 

IAEA (CRP# E12017), included 102 baseline staging 18F-FDG PET/CTs of pediatric 

lymphoma patients (mean age 11 yrs). Images were quantified to determine the 

whole-body (wb) tumor burden (wbMTV and wbTLG) using a semi-automatic (SEMI) 

software and an CNN-based software. Both were displayed as wbMTVSEMI & 

wbTLGSEMI and wbMTVCNN & TLGCNN. The intraclass correlation coefficient (ICC) 

was applied to evaluate concordance between the CNN-based software and the 

SEMI software.  

RESULTS: Twenty-six patients were excluded from the analyses because the 

software was unable to perform calculation. In the remaining 76 patients, wbMTVCNN 

and wbMTVSEMI whole-body tumor burden metrics were highly correlated 

(ICC=0.993; 95%CI: 0.989 -0.996; p-value<0.0001) as were wbTLGCNN and 

wbTLGSEMI (ICC=0.999; 95%CI: 0.998-0.999; p-value<0.0001). However, the time 

spent calculating these metrics was significantly (<0.0001) faster by CNN (mean = 



19 seconds; 11 - 50 seconds) compared to the semi-automatic method (mean = 

21.6 minutes; 3.2 – 62.1 minutes), especially in patients with advanced disease.   

CONCLUSION: Determining whole-body tumor burden in pediatric lymphoma 

patients using CNN is fast and feasible in clinical practice.   
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INTRODUCTION 

 

Positron emission computed tomography with fluoro-deoxyglucose labeled 

with fluorine-18 (18F-FDG PET/CT) is an established modality for pediatric staging 

of Hodgkin’s lymphoma and Non‐Hodgkin’s lymphoma as well as an invaluable tool 

for treatment response evaluation (1–7). Visual interpretation of 18F-FDG PET/CT 

studies to assess the extent of disease can be subjective; therefore qualitative 

interpretation is necessary to provide additional insight, reducing the subjectivity of 

visual interpretation (8,9). 18F-FDG PET/CT whole-body metabolic tumor burden 

parameters such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG) 

bear a high prognostic value in lymphoma patients, much greater than SUV values 

(10–13). However, the prognostic determination, although easily measured in 

primary solid tumors (14–17), have not been applied in daily clinical practice in 

patients with widespread lymphoma disease because calculations are extremely 

time-consuming.   

There is a wide variety of methods to quantify MTV and TLG, using threshold-

based or algorithm-based methods. Specifically relating to the threshold-based 

methods, the most commonly applied is the volume of interest (VOI) isocontour 

method (15,17,18). Automatic multifocal segmentation quantification in patients with 

lymphoma uses VOI isocontour and has been validated before and proven to be 

quite fast [19]. Depending on patient tumor burden, the time spent calculating MTV 

and TLG could be impractical and still not feasible in daily clinical practice. The 



extraction and processing of imaging features from radiological data, also known as 

radiomics, may also link imaging features with patient outcome. However, radiomics 

also requires precise tumor ROI delineation, which is also time-consuming with 

delineation variabilities between observers.  

Currently, computer deep learning and functioning as a neural network have 

evolved substantially, achieving remarkable success in tumor segmentation and 

diagnosis and ultimately transforming and optimized clinical practice (18,20, 21, 22, 

23), providing objective and accurate diagnoses in medicine by building diagnostic 

models.  For example, software for multi-modality imaging using deep convolutional 

neural networks (dCNN) method automatically localizes and delineates metastases 

in whole-body 18F-FDG PET/CT scans. dCNN seems capable of correctly localizing 

and classifying uptake patterns in 18F-FDG PET/CT images into foci suspicious and 

non-suspicious for cancer. These extracted features help the semantic 

interpretation, and may simplify the PET workflow with a one-click calculation of 

whole-body tumor burden (24,25, 26).  However, the clinical applicability of this 

software has not yet been fully tested and unusual features may be identified if 

unsupervised by a physician (27,28).  

The purpose of this study was to evaluate the performance of the recently 

developed CNN software in a clinical setting in pediatric lymphoma patients.  

 

  



MATERIAL AND METHODS   

 

This data set, retrospectively studied, is derived from a subset of 102 baseline 

staging 18F-FDG PET/CTs of pediatric lymphoma patient images from the data pool 

of the prospective multicenter research project coordinated by the International 

Atomic Energy Agency (IAEA) (CRP# E12017). 

 

Research Regulation and Data Protection     

The study protocol was approved by each center’s Institutional Review Board. 

A signed parental consent was an inclusion criterion for recruitment and all subjects 

signed a written informed consent. Cases and forms were anonymized to ensure 

confidentiality while sharing data internationally.    

 

Patients  

The eligibility criteria consisted of pediatric patients (age<18 years) with newly 

diagnosed Hodgkin’s lymphoma or non-Hodgkin’s lymphoma who underwent a 

staging 18F-FDG PET/CT scan. According to the World Health Organization 

classification criteria, the diagnosis was based on biopsy with immunohistochemistry 

(29). Exclusion criteria consisted of prior radiation therapy and chemotherapy and 

concurrent HIV infection.  



The patient’s clinical characteristics and tumor staging were evaluated, such 

as the age of diagnosis, the final clinical-stage, spleen disease, additional nodal 

sites, disease volume, B-symptoms, LDH, leukocytosis, elevated erythrocyte 

sedimentation rate, anemia, albumin, bone marrow 18F-FDG uptake, Deauville, 

MTV and TLG criteria.  

 

18F-FDG PET/CT Imaging and quantification       

All patients underwent a staging whole-body 18F-FDG PET/CT, from the top 

of the skull to the toes. All scans were performed according to standard SNMMI or 

EANM procedure guidelines (30).  

The whole-body tumor burden (wbMTV and wbTLG) metrics were calculated 

using semi-automatic (SEMI) and convolutional neural networks (CNN) softwares. 

All images on both software were processed by two observers (M.R.C. & R.A.A). 

Differences in the wbMTV and wbTLG metrics (if any) were re-calculated to reach 

consensus. The SEMI software was used as the reference standard to evaluate the 

CNN software’s performance.  

Whole-body tumor burden semi-automatic quantification (SEMI) 

The whole-body tumor burden (wbMTV and wbTLG) metrics were calculated 

using semi-automatic multifocal segmentation (SEMI) software (Syngovia VB20 - 

Siemens Medical Solutions, Chicago, IL), previously validated for clinical use (19) 

using a fixed threshold.  



With this software the whole-body tumor burden metrics (wbMTVSEMI and 

wbTLGSEMI) were obtained.  The SEMI whole-body tumor burden was performed by 

choosing the multifocal segmentation tool that automatically draws a rectangular VOI 

around the patient’s entire body on the coronal axis. If necessary, the VOI is adjusted 

on the axial and sagittal planes. The liver is set as the background reference, and 

then volumes of interest are automatically determined surrounding each lymphoma 

lesion with uptake higher than the mean SUV of the liver. A VOI threshold of 41% of 

the SUVmax using isocontour drawings was applied for all automatically delineated 

lesions. The image and VOIs were then reviewed to exclude physiologic areas 

incorrectly selected as cancer (such as brain, kidneys, bladder, and ureters) and 

include metastatic foci with relatively low uptake were missed by the software (e.g., 

small lymph nodes).  Afterward, whole-body MTV and TLG calculations were readily 

available and displayed as wbMTVSEMI and wbTLGSEMI (Figure 1). 

Whole-body tumor burden Convolutional Neural Networks (CNN) 

The whole-body tumor burden (wbMTV and wbTLG) metrics were calculated 

using CNN software based on dCNN (Syngovia VB50 - Siemens Medical Solutions, 

Chicago, IL). The quantification was undertaken on a loaned Siemens equipment. 

With this software the whole-body tumor burden metrics (wbMTVCNN and wbTLGCNN) 

were obtained.   

The computation of the whole-body tumor burden on the CNN software was 

automatically performed by the dCNN method as described by Sibille L, et al [24]. 

Unlike the SEMI software, the CNN software does not require an initial positioning 



of a VOI surrounding the body. The CNN automatically computes the MIP 18F-FDG 

PET image and integrates the anatomical CT image using an intuitive interface. 

Afterward, the software automatically detects 18F-FDG-avid anatomical landmarks 

and discriminates hypermetabolic areas related to the physiologic activity that will be 

automatically excluded (Figure 2) from cancer. Briefly, the PET VOIs are segmented 

using a fixed threshold algorithm and evaluated by the dCNN. Whole-body CT 

examinations are aligned to an anatomic atlas. Finally, a MIP of the whole-body 18F-

FDG PET/CT is reconstructed, and the lesions are classified. The dCNN uses a 

combination of multi-planar reconstructions of PET and CT, 18F-FDG PET MIPs, 

and anatomic atlases to predict the anatomic localization of 18F-FDG foci and 

determine whether a focus was suspicious (or not) for malignancy. The advantage 

of the CNN algorithm is that it does not require the initial positioning of a VOI. At the 

moment, this specific CNN software is not validated for pediatric patients. 

Two forms of analyses were undertaken on the CNN software: 

1. Observer method: All VOIs automatically generated by the multifocal 

segmentation tool were reviewed (blindly) by both observers to determine if the 

VOIs were wrongly included or excluded from the results. Afterward, values were 

calculated and displayed as wbMTVCNN+observer and wbTLGCNN+observer.   

2. No-observer method: The VOIs automatically obtained were accepted and not 

reviewed blindly by each of the observers. The calculations were readily available 

and displayed as wbMTVCNN and wbTLGCNN.  

  



Statistical Analysis 

  The sample was characterized by descriptive analysis, performed using 

frequency tables for categorical variables and measures of position and dispersion 

for continuous variables (mean values, standard deviation, median, minimum and 

maximum).  

Chi-square test or Fisher’s exact test were used to check associations or 

compare proportions, well the comparison of continuous or orderable measurements 

between the two groups was undertaken by the Mann-Whitney test.  Identification of 

risk factors associated with the event was performed with univariate and multiple 

Cox regression analyses. The variable selection process employed was stepwise.  

To verify the relationship between continuous measurements, Spearman’s 

correlation coefficient was used wearing from -1 to 1.  

To assess agreement between whole-body tumor burden quantification of the 

SEMI and CNN software, the intraclass correlation coefficient (Intraclass Correlation 

Coefficient - ICC) was used (values above 0.7 were considered as indicating 

substantial agreement). The Friedman’s test was used to compare the times. The 

Wilcoxon test for related samples was used to compare the times.  The time was 

defined when the physician began focusing on the task until completion of whole-

body tumor burden calculation.   

The level of significance adopted was 0.05. 

 



RESULTS 

The quantification of whole-body tumor burden was undertaken in a total of 

102 18F-FDG PET/CT baseline scans of pediatric lymphoma patients using both 

software. There were 32 (31.4%) female patients and 70 (68.6%) males. The mean 

age of lymphoma diagnosis was 11.1 ± 4.3 years (ranging from 4.0 to 18.0 years). 

Among these, 80 (78.4%) patients had Hodgkin’s lymphoma, and 22 (21.6%) 

patients had non-Hodgkin’s lymphoma. Table 1 displays all patient’s clinical 

characteristics.  

Semi-automatic calculation of whole-body tumor burden (SEMI) 

The wbMTVSEMI and wbTLGSEMI were undertaken in all 102 patients. The 

average time spent calculating wbMTVSEMI and wbTLGSEMI was 21.6 minutes, 

ranging from 3.2 – 62.1 minutes. Notably, in patients with widespread lesions in 

multiple organs or confluent with areas of physiological excretion, the software took 

longer to identify and delineate abnormal areas.  

Convolutional neural network-based calculation of tumor burden (CNN) 

The wbMTVCNN+observer and wbTLGCNN+observer were undertaken in all 102 

patients. The average time spent calculating wbMTVCNN+observer and wbTLG 

CNN+observer, with the CNN software having the observers evaluate the images before 

calculation, was 3.8 minutes, ranging from 0.5 – 19.6 minutes.  

On the other hand, wbMTVCNN and wbTLGCNN (that is, without any observer 

evaluating the CNN software’s performance before calculation) were undertaken in 



76 of the 102 patients. Twenty-six patients were excluded from the analyses 

because the software was unable to perform calculation due to patient 

movement/misregistration (n=6), software non-recognition of small lymph nodes as 

a disease (n=8), widespread brown fat (n=3), diffuse bone infiltration (n=5), diffuse 

homogeneous mild infiltration of the spleen (n=2), and subcutaneous infiltration of 

18F-FDG in the injection site (n=2) (Figure 3).  

Impressively, the average total time spent calculating wbMTVCNN and 

wbTLGCNN was 19 seconds, ranging from 11 to 50 seconds. The total time relates to 

the time starting when the physician began focusing on the task until completion of 

whole-body tumor burden calculation.  Thus, the time spent calculating wbMTVCNN, 

wbMTVCNN+observer, and wbMTVSEMI metrics in 76 paired patients were significantly 

different (p<0.0001). The CNN software alone was much faster and more precise 

than both the SEMI and the CNN+observer methods (Table 2).  

Comparison of SEMI and CNN tumor burden measurements  

The wbMTVCNN+observer and wbMTVSEMI metrics calculated on 102 patients 

were highly correlated (ICC=0.993; 95%CI = 0.989 - 0.996; p<0.0001) as were the 

wbTLG CNN+observer and wbTLGSEMI (ICC=0.999; 95%CI = 0.998 - 0.999; p<0.0001).  

Among the 76 18F-FDG PET/CTs in which the fully automatic CNN was performed, 

the wbMTVCNN+observer, wbMTVCNN, and wbMTVSEMI metrics were also highly 

correlated as were the wbTLGCNN+observer, wbTLGCNN, and wbTLGSEMI metrics (Table 

3). 



Impressively, the correlation between wbMTVCNN and wbMTVSEMI was 

significantly high (ICC = 0.950; 95%CI: 0.922-0.968; p < 0.0001) as was wbTLGCNN 

and wbTLGSEMI (ICC = 0.947; 95%CI: 0.917-0.966; p < 0.0001). Therefore, the CNN 

software performed equally well, similar to the SEMI tool in which an experienced 

observer evaluated the images.  

More impressive, however, was the fact that the correlation between 

wbMTVCNN+observer and wbMTVCNN was significantly high (ICC = 0.946; 95%CI: 0.912-

0.966; p<0.0001) as was wbTLG CNN+observer and wbTLGCNN (ICC = 0.952; 95%CI: 

0.925-0.969; p < 0.0001). Consequently, the CNN software performance did not 

require an observer to evaluate the images and validate all VOIs.   

 

  



DISCUSSION 

 

To our knowledge, this is the first study to quantify the whole-body tumor 

burden of pediatric lymphoma patients using convolution of neural networks (CNN) 

and deep learning (DL). Despite the different 18F-FDG biodistribution of pediatric 

patients compared to adults, the CNN-based software accurately delineated 

abnormal regions. The CNN-based software optimized the working time, was 

extremely fast, and performed better than the semi-quantitative software to calculate 

whole-body tumor burden.   

The CNN-based software allows a review of the VOIs provided automatically 

(adding new VOIs manually or deleting incorrect VOIs). Ultimately the comparison 

of the CNN-based software with and without the observer’s review of the VOIs 

rendered the same metrics. However, the time spent determining the whole-body 

tumor burden metrics by the semi-automatic software was longer because it 

depends primarily on the extent of the disease. The semi-automatic quantification 

does not allow a pre-selection of VOIs by the operator before creating the definitive 

findings and thus does not distinguish diseased areas from physiological areas, 

creating many VOIs that overload the program.    

 On the other hand, quantifying the whole-body tumor burden through CNN-

based software was significantly faster, with and without the observer reviewing the 

VOIs. Impressively, when comparing quantification of the whole-body tumor burden 

on the CNN-based software (without observer interference) with the semi-automatic 



software and CNN-based software with observer interference, CNN-based software 

without the interference of the observer was significantly faster and just as precise. 

CNN-based software took as little as 20 seconds to calculate the patient’s entire 

tumor burden without the need to review the VOIs (Figures 4 and 5).  

 However, there were some limitations. It was not possible to show whether 

the measurements predicted by the CNN-based software could be applied to our 

patients’ cohort to predict prognosis and response evaluation. The majority (80%) of 

the patients had Hodgkin´s lymphoma and there were only two deaths; therefore, it 

was not possible to determine overall survival. A larger number of patients with 

events are required to determine whether the measurements predicted by CNN-

based software could predict prognosis.  Another limitation was that 25% of the 

patients were excluded from analyses because the CNN-based software could not 

recognize areas of metabolically active disease and could not perform calculation. 

In such situations, these patients had to be excluded because there was no ability 

to compare CNN quantification with manual or semi-automatic quantification. The 

CNN software we tested was not initially designed nor validated to quantify 

specifically pediatric patients, but even so, performed quite well. These exclusions 

were caused by either the wrong lesion being segmented or lesions being missed. 

These included small lymph nodes with mild 18F-FDG uptake; including extensive 

brown fat as lymphomatous infiltration; not including extensive diffuse bone marrow 

infiltration (5/12 patients); including radiopharmaceutical extravasation sites; and 

including bladder catheter. Most likely, with further CNN and DL development and 



specific training in pediatric patients regarding the differentiation of normal 

biodistribution versus cancer tissue, failure rates will possibly reduce. 

 CNN-based software with CNN and DL still requires the input of the 

observer (26-28). In 25% of the patients, CNN was not able to depict the correct 

neoplastic tissue or added non-neoplastic tissue, thus quantification had to be 

excluded as the software was not perform the calculations. Therefore, errors and 

failure to detect proper tissue will occur even in CNN and DL software, which argues 

in favor for the observer input. Most likely the largest errors may be associated with 

unsupervised quantification.   

In conclusion, CNN-based quantification of whole-body tumor burden in 

pediatric lymphoma patients is an emerging field. Whole-body tumor burden 

determination using CNN-based software is extremely fast and feasible in clinical 

practice in pediatric lymphoma patients. CNN-based software requires CNN and DL 

development and specific training in pediatric patients and the input of the observer 

to minimize the failure rates. Tumor burden should be evaluated in most if not all 

tumors and age groups for therapy purposes. 
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KEY POINTS 

QUESTION: Will the use of CNN promote fast and also reliable quantification data 

regarding whole-body metabolic tumor burden in 18F-FDG PET/CT pediatric 

lymphoma patients? 

PERTINENT FINDINGS:  Whole-body metabolic tumor burden quantification using 

CNN is highly correlated to semi-automatic quantification (ICC=0.993; 95%CI: 

0.989 -0.996; p-value<0.0001).  

IMPLICATIONS FOR PATIENT CARE: In addition to reliable data, implementation 

of CNN quantification tools in the clinical practice may be able to quickly and 

accurately deliver prognostic information for better patient management.   
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TABLES 

 

Table 1. Clinical characteristics of patients (N=102).  

 

Variable Number Percentage 

Sex 
Female 32 31.4% 

Male 70 68.6% 

Lymphoma type 
Hodgkin  80 78.4% 

Non- Hodgkin 22 21.6% 

Clinical Final 
Stage 

1 8 7.8% 

2 34 33.3% 

3 34 33.3% 

4 26 25.5% 

Spleen  

Disease 

Yes 29 28.4% 

No 73 71.6% 

Extra Nodal Sites 

0 67 65.7% 

1 15 14.7% 

≥2 20 19.6% 

Disease Bulk 
Bulky 63 61.8% 

Non Bulky 39 38.2% 

B Symptoms 
Yes 43 43.0% 

No 57 57.0% 

LDH 
High 47 52.8% 

Normal 42 47.2% 

Leucocytosis Yes 32 31.7% 



No 69 68.3% 

Erythrocyte 
Sedmentation 

Rate 

Normal 34 52.3% 

Elevated 31 47.7% 

Anemia 
Yes 47 47.5% 

No 52 52.5% 

Albumin 
Yes 27 37.0% 

No 46 63.0% 

Bone Marrow 
18F-FDG  

Uptake 

Diffuse 12 11.9% 

Focal 16 15.8% 

Negative 73 72.3% 

Event 
Yes 10 9.8% 

No 92 90.2% 

Status 
Alive 101 99.0% 

Dead 1 1.0% 

 

  



 

Table 2. Time spent quantifying whole-body tumor burden metrics on the semi-

automatic software (SEMI) and CNN software with observer input (CNN+observer) 

and without observer input (CNN).  

 

Variable N 

Time in seconds 

p-value 

Mean Std Dev Min  Med Max 

SEMI 76 1301.3 863.5 198.0 1107.0 3724.0 

<0.0001 

CNN 

+ 

OBSERVER 

76 221.1 204.4 31.0 155.0 1176.0 

CNN 76 19.6 8.0 11.0 17.0 50.0 

* Friedman´s Test (all different); Std Dev = standard deviation; Min = Minimum; Med= median; Max = maximum. ICC = 

Intraclass Correlation Coefficient; CI = confidence interval. 

 

 

 

  



Table 3. Correlation of whole-body tumor burden metrics on semi-automatic-based 

software and the CNN-based   software with (CNN+observer) and without (CNN) 

observer input in 76 patients.  

 

Variable Mean 
Std 
Dev 

Min Med Max ICC 
95% 
CI 

p-values 

MTVSEMI 242.8 205.9 4.6 149.0 772.6 

0.960 
0.942 

- 
0.974 

<0.0001 MTVCNN+observer 254.8 212.8 4.1 178.3 778.3 

MTVCNN 234.8 206.9 11.7 147.6 784.4 

TLGSEMI  1626.4 1674.6 50.0 894.7 6963.1 

0.963 
0.947 

- 
0.975 

<0.0001 TLGCNN+observer 1647.3 1685.8 50.1 902.1 5963.4 

TLGCNN  1647.7 1811.2 31.0 871.3 8218.6 

Std Dev = standard deviation; Min = Minimum; Med= median; Max = maximum. ICC = Intraclass Correlation Coefficient; CI = 

confidence interval. 

 

 

  



 

Figure 1. Whole-body tumor burden quantification of a baseline staging 18F-FDG 

PET/CT using the semi-automatic software of a patient with Non-Hodgkin's 

Lymphoma. A) MIP image shows hypermetabolic lymphoma infiltration in left 

supraclavicular/cervical lymph nodes, mediastinal lymph nodes and extensive lymph 

nodes in the abdomino-pelvic regions; lung nodules and bone infiltration. B) For 

calculation, the liver was set as the background reference and the VOIs 

automatically surrounded each lymphoma lesion with uptake higher than the mean 

SUV of the liver. Notice that the VOIs also include physiologic areas incorrectly 

selected as cancer in order to include metastatic foci with relatively low uptake, such 

as the right upper lobe lung nodule metastasis with mild 18F-FDG uptake.   



 

Figure 2. Staging 18F-FDG PET/CT whole-body tumor burden quantification using 

CNN. Displayed in RED are the regions that the software deems should be excluded 

from the analysis (regions related to physiological uptake: brain, head&neck, heart, 

intestines, kidneys and bladder) and in GREEN the regions that the software 

included in the calculation of whole-body tumor burden. In this patient, the extensive 

cervical lymph node bulky mass and mediastinal lymph nodes were included.   

 



 

Figure 3. A baseline staging 18F-FDG PET/CT of a patient with Hodgkin's 

Lymphoma. (A) The MIP image reveals a cervical hypermetabolic bulky mass. The 

images displayed with different whole-body tumor burden quantification methods 

show that (B) using the semi-automatic method, VOIs are delineated in the cancer 

lesions and also in physiologic regions not related to cancer; these regions must be 

deleted prior to quantification. The whole-body tumor burden calculation showed 

SEMI-wbMTV = 104 and TLG VB20 =1663; the time spent calculating these metrics 

was 5 minutes. (C) On the other hand, the CNN whole-body tumor burden 

quantification did not delineate regions non-related to cancer and demonstrated 

similar metrics: CNN-wbMTV-OBSERVER = 105 and CNN-wbTLG-OBSERVER = 1671. 

Impressively, the time spent calculating was significantly faster (13 seconds) even 

though on CNN the software failed to delineate the spleen, which had to be 

performed manually.  



 

Figure 4. A baseline staging 18F-FDG PET/CT of a Hodgkin's Lymphoma. (A) MIP 

images reveals a mediastinal hypermetabolic bulky mass and extensive cervical, 

abdominal lymph nodes and spenic infiltration. (B) Semi-automatic quantification 

revealed SEMI-wbMTV = 548 and SEMI-wbTLG = 5238; the time spent calculating 

was 15 minutes. (C) On the other hand, the CNN whole-body tumor burden 

quantification demonstrated similar metrics: CNN-wbMTV = 570 and CNN-wbTLG = 

5213 but the time spent calculating was significantly faster (14 seconds). Notice how 

the CNN software excludes focal areas of physiologic uptake such as the right ureter 

and includes areas of mild uptake such as the left hilar lymph node.  

 

 

 

 



 

Figure 5. 18F-FDG PET/CT of a patient with Hodgkin´s Lymphoma. (A)The MIP 

images revealed a mediastinal hypermetabolic bulky mass, cervical, axillary and 

inguinal nodes. (B) The semi-automatic VB20 whole-body tumor burden 

quantification revealed MTV = 194 and TLG = 1007; the time spent calculating these 

metrics was 30 minutes because of the extent of lesions and the necessity to exclude 

multiple areas of physiological uptake. (C) On the other hand, the CNN whole-body 

tumor burden quantification demonstrated similar metrics: MTV = 200 and TLG = 

968. However, the time spent calculating was significantly faster (36 seconds). 

Notice how the CNN software excludes physiologic areas with high uptake such as 

the heart and includes lymph nodes with less uptake adjacent to the heart. 
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