Effect of COVID-19 on ¹⁸F-FDG PET/CT: Is there a need for considering COVID-19 status before planning ¹⁸F-FDG PET/CT for oncological evaluation?

Authors:

Anwin Joseph Kavanal, MD¹

Santosh Ranjan Jena, MBBS¹

Rajender Kumar, MD¹

Chandan Krushna Das, MD, DM²

Sunil Kumar, MD¹

Bhagwant Rai Mittal, MD, DNB¹

Affiliation:

1. Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India

2. Medical Oncology OPD, Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India

Corresponding Author:

Bhagwant Rai Mittal

Professor

Department of Nuclear Medicine and PET/CT

Postgraduate Institute of Medical Education and Research

Chandigarh-160012, India

Tel: +911722756722

Fax: +911722742858

Email: brmittal@yahoo.com

First Author:

Anwin Joseph Kavanal,

Senior Resident

Department of Nuclear Medicine

Postgraduate Institute of Medical Education and Research

Chandigarh, India- 160012

Tel: +91-9947384052

Fax: +91-172 2742858

Email: anwinjosephk@gmail.com

Disclaimer, if any: There is no conflict of interest

Word Counts of the manuscript: 831

Financial support for the work: There is no financial disclosure

Conflict of interest: None

Abbreviated Title: COVID-19 impact on PET/CT interpretation

Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications.

License: https://creativecommons.org/licenses/by/4.0/. Details: https://jnm.snmjournals.org/page/permissions.

ABSTRACT

Incidental detection of coronavirus disease-2019 (COVID-19) related lung changes in ¹⁸F-FDG PET/CT of oncology patients have been increasingly reported. Most of the case reports/series stressed the retrospective diagnosis of COVID-19 with the help of ¹⁸F-FDG PET/CT lung findings. In this case report, we introduce a different aspect of COVID-19 related lung changes in ¹⁸F-FDG PET/CT, interfering with the evaluation of metastatic lung lesions in patients with renal cell carcinoma.

KEYWORDS: COVID-19, ¹⁸F-FDG PET/CT, Lung metastasis, Response Evaluation, Renal cell carcinoma

INTRODUCTION

Various lung involvement patterns have been reported in ¹⁸F-FDG PET/CT of COVID-19 patients undergoing workup for various malignancies. The patterns range from ¹⁸F-FDG avid diffuse ground-glass opacities to ¹⁸F-FDG avid patchy consolidatory changes, with or without ¹⁸F-FDG avid mediastinal lymph nodes, depending on the imaging time from the onset of infection and other unknown factors [*1-4*]. COVID-19 infection was a retrospective diagnosis in most reported cases, after seeing the typical image findings in the ¹⁸F-FDG PET/CT [*3-7*]. Here, we present a different aspect of COVID-19 on ¹⁸F-FDG PET/CT causing interference with response assessment in a patient receiving chemotherapy for pulmonary metastasis from renal cell carcinoma.

CASE HISTORY

A 45 year-old-man, a known case of metastatic renal cell carcinoma, underwent cytoreduction nephrectomy followed by first-line chemotherapy with pembrolizumab and axitinib because of multiple cannonball metastases in the lungs. ¹⁸F-FDG PET/CT scan, at the end of treatment, showed disease progression in the form of an increase in the number and size of the lung nodules. Then he was started on second-line chemotherapy with Lenvatinib (oral, 18 mg daily) and Everolimus (oral, 5 mg daily). His interim ¹⁸F-FDG PET/CT (Figure 1) showed a favorable response (> 30% reduction in size and ¹⁸F-FDG avidity compared to baseline PET/CT) to second-line therapy, and he was continued on the same treatment. He was diagnosed with COVID-19 in May 2020 on evaluation for malaise and chills. He was managed conservatively with antibiotics, antipyretics, and multivitamins in a local hospital. He had no symptoms/signs suggestive of pneumonia and never required oxygen support during the 11 days course in the hospital. He was discharged from the hospital following a negative nucleic acid test one week before he was

scheduled for an ¹⁸F-FDG PET/CT scan at six months of chemotherapy to look for the response. The ¹⁸F-FDG PET/CT (Figure 2) showed ¹⁸F-FDG avid diffuse GGOs/patchy consolidatory changes in bilateral lung fields from apex to base, obscuring the metastatic lesions. The COVID - 19 related lung changes obscured both anatomical and metabolic features of metastatic lesions, leading to difficulty in assessing response to treatment.

DISCUSSION

The ¹⁸F-FDG uptake in the GGOs in the background may add spill-in counts to the metastatic lesions causing a false high uptake in the metastatic lesions [8]. So, an accurate assessment of metabolic response was also not possible in this patient. The patient was advised to repeat the nucleic acid test because of ¹⁸F-FDG avidity in the GGOs/consolidatory changes and was found to be positive. The patient was advised to remain in home isolation again.

CONCLUSION

Thus, we have to consider this possible interference during this pandemic phase before scheduling patients for ¹⁸F-FDG PET/CT scan for various oncological purposes.

REFERENCES

- 1. Ajuria-Illarramendi O, Martinez-Lorca A, Orduna-Diez MDP. [18F]FDG-PET/CT in different COVID-19 phases. *IDCases*. 2020;21:e00869.
- 2. Charters PFP, Little D, Rodrigues JCL, et al. 18FDG-PET/CT findings in COVID-19: a single centre retrospective radiological review. *BJR Case Rep.* 2020;6:20200091.
- 3. Liu C, Zhou J, Xia L, et al. 18F-FDG PET/CT and serial chest CT findings in a COVID-19 patient with dynamic clinical characteristics in different period. *Clin Nucl Med*. 2020;45:495-496.
- 4. Colandrea M, Gilardi L, Travaini LL, et al. ¹⁸F-FDG PET/CT in asymptomatic patients with COVID-19: the submerged iceberg surfaces. *Jpn J Radiol*. 2020;38:1007-1011.
- 5. Deng Y, Lei L, Chen Y, et al. The potential added value of FDG PET/CT for COVID-19 pneumonia. *Eur J Nucl Med Mol Imaging*. 2020;47:1634-1635.
- Doroudinia A, Tavakoli M. A case of coronavirus infection incidentally found on FDG
 PET/CT scan. *Clin Nucl Med*. 2020;45:e303-e304.
- 7. Martineau P, Kidane B. FDG PET/CT findings in an asymptomatic case of confirmed COVID-19. *Clin Nucl Med*. 2020;45:647-648.
- 8. Akerele MI, Wadhwa P, Silva-Rodriguez J, et al. Validation of the physiological background correction method for the suppression of the spill-in effect near highly radioactive regions in positron emission tomography. *EJNMMI Phys.* 2018;5:34.

Figure 1: (Column A) ¹⁸F-FDG PET/CT whole-body maximum-intensity projection image, (Column B) axial fused PET/CT images and (Column C) corresponding CT images showed variably ¹⁸F-FDG avid random nodules in both lung fields (SUVmax of hottest nodule 9.9).

Figure 2: (Column A) ¹⁸F-FDG PET/CT whole-body maximum-intensity projection image, (Column B) axial fused PET/CT images and (Column C) corresponding CT images showed ¹⁸F-FDG avid diffuse GGOs/patchy consolidatory changes in bilateral lung fields from apex to base obscuring the details of metastatic lesions (SUVmax of hottest nodule 7.8, SUV max of GGOs 7.3).