Effect of COVID-19 on 18F-FDG PET/CT: Is there a need for considering COVID-19 status before planning 18F-FDG PET/CT for oncological evaluation?

Authors:

Anwin Joseph Kavanal, MD

Santosh Ranjan Jena, MBBS

Rajender Kumar, MD

Chandan Krushna Das, MD, DM

Sunil Kumar, MD

Bhagwant Rai Mittal, MD, DNB

Affiliation:

1. Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India

2. Medical Oncology OPD, Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India

Corresponding Author:

Bhagwant Rai Mittal
Professor
Department of Nuclear Medicine and PET/CT
Postgraduate Institute of Medical Education and Research
Chandigarh-160012, India
Tel: +911722756722
Fax: +911722742858
Email: brmittal@yahoo.com
First Author:
Anwin Joseph Kavanal,
Senior Resident
Department of Nuclear Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India- 160012
Tel: +91-9947384052
Fax: +91-172 2742858
Email: anwinjosephk@gmail.com

Disclaimer, if any: There is no conflict of interest

Word Counts of the manuscript: 831

Financial support for the work: There is no financial disclosure

Conflict of interest: None

Abbreviated Title: COVID-19 impact on PET/CT interpretation

Immediate Open Access: Creative Commons Attribution 4.0 International License (CC BY) allows users to share and adapt with attribution, excluding materials credited to previous publications.
License: https://creativecommons.org/licenses/by/4.0/.
Details: https://jnm.snmjournals.org/page/permissions.
ABSTRACT

Incidental detection of coronavirus disease-2019 (COVID-19) related lung changes in 18F-FDG PET/CT of oncology patients have been increasingly reported. Most of the case reports/series stressed the retrospective diagnosis of COVID-19 with the help of 18F-FDG PET/CT lung findings. In this case report, we introduce a different aspect of COVID-19 related lung changes in 18F-FDG PET/CT, interfering with the evaluation of metastatic lung lesions in patients with renal cell carcinoma.

KEYWORDS: COVID-19, 18F-FDG PET/CT, Lung metastasis, Response Evaluation, Renal cell carcinoma
INTRODUCTION

Various lung involvement patterns have been reported in 18F-FDG PET/CT of COVID-19 patients undergoing workup for various malignancies. The patterns range from 18F-FDG avid diffuse ground-glass opacities to 18F-FDG avid patchy consolidatory changes, with or without 18F-FDG avid mediastinal lymph nodes, depending on the imaging time from the onset of infection and other unknown factors [1-4]. COVID-19 infection was a retrospective diagnosis in most reported cases, after seeing the typical image findings in the 18F-FDG PET/CT [3-7]. Here, we present a different aspect of COVID-19 on 18F-FDG PET/CT causing interference with response assessment in a patient receiving chemotherapy for pulmonary metastasis from renal cell carcinoma.

CASE HISTORY

A 45 year-old-man, a known case of metastatic renal cell carcinoma, underwent cytoreduction nephrectomy followed by first-line chemotherapy with pembrolizumab and axitinib because of multiple cannonball metastases in the lungs. 18F-FDG PET/CT scan, at the end of treatment, showed disease progression in the form of an increase in the number and size of the lung nodules. Then he was started on second-line chemotherapy with Lenvatinib (oral, 18 mg daily) and Everolimus (oral, 5 mg daily). His interim 18F-FDG PET/CT (Figure 1) showed a favorable response (> 30% reduction in size and 18F-FDG avidity compared to baseline PET/CT) to second-line therapy, and he was continued on the same treatment. He was diagnosed with COVID-19 in May 2020 on evaluation for malaise and chills. He was managed conservatively with antibiotics, antipyretics, and multivitamins in a local hospital. He had no symptoms/signs suggestive of pneumonia and never required oxygen support during the 11 days course in the hospital. He was discharged from the hospital following a negative nucleic acid test one week before he was
scheduled for an 18F-FDG PET/CT scan at six months of chemotherapy to look for the response. The 18F-FDG PET/CT (Figure 2) showed 18F-FDG avid diffuse GGOs/patchy consolidatory changes in bilateral lung fields from apex to base, obscuring the metastatic lesions. The COVID-19 related lung changes obscured both anatomical and metabolic features of metastatic lesions, leading to difficulty in assessing response to treatment.

DISCUSSION

The 18F-FDG uptake in the GGOs in the background may add spill-in counts to the metastatic lesions causing a false high uptake in the metastatic lesions [8]. So, an accurate assessment of metabolic response was also not possible in this patient. The patient was advised to repeat the nucleic acid test because of 18F-FDG avidity in the GGOs/consolidatory changes and was found to be positive. The patient was advised to remain in home isolation again.

CONCLUSION

Thus, we have to consider this possible interference during this pandemic phase before scheduling patients for 18F-FDG PET/CT scan for various oncological purposes.
REFERENCES

Figure 1: (Column A) 18F-FDG PET/CT whole-body maximum-intensity projection image, (Column B) axial fused PET/CT images and (Column C) corresponding CT images showed variably 18F-FDG avid random nodules in both lung fields (SUVmax of hottest nodule 9.9).
Figure 2: (Column A) 18F-FDG PET/CT whole-body maximum-intensity projection image, (Column B) axial fused PET/CT images and (Column C) corresponding CT images showed 18F-FDG avid diffuse GGOs/patchy consolidatory changes in bilateral lung fields from apex to base obscuring the details of metastatic lesions (SUVmax of hottest nodule 7.8, SUV max of GGOs 7.3).