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Abstract 

Artificial intelligence (AI) has rapidly progressed with exciting opportunities that drive 

enthusiasm for significant projects. A sensible and sustainable approach would be to start 

building an AI footprint with smaller, machine learning (ML) based initiatives using artificial 

neural networks (ANN) before progressing to more complex deep learning (DL) 

approaches using convolutional neural networks (CNN). A number of strategies and 

examples of entry level projects are outlined, including mock potential projects using CNN 

to progress toward. The examples provide a narrow snapshot of potential applications 

designed to inspire readers to think outside the box at problem solving using AI and ML. 

The simple and resource light ML approaches are ideal for problem solving, accessible 

starting points for a developing institutional AI program, and provide solutions that can 

have a significant and immediate impact on practice. A logical approach would be to use 

ML to examine the problem and identify amongst the broader ML projects which problems 

are most likely to benefit from a DL approach.  
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Introduction 

Artificial intelligence (AI) has moved at such a fast pace and offers so many exciting 

opportunities that the inclination is to jump into something big. But a more sensible and 

sustainable approach would be to start small, learn, build momentum and use internal 

knowledge to then grow the AI strategy. Individuals or groups eager to build their AI 

footprint tend to target their efforts to create a world changing deep learning (DL) 

algorithm. The real challenge is not getting started in AI, it is getting started without 

bursting the enthusiastic bubble. For example, consider a very keen group of 

collaborators who wanted to develop a DL algorithm to stratify asthma and silicosis on 

ventilation lung scans from disease free scans but with no AI experience, limited funding 

and to be fair, little insight into whether the lung ventilation study had characteristics 

capable of differentiating the pathologies from normality. A lot of time, energy and money 

could be wasted before the project failed. Even if the DL provided some stratification, 

humans will not have learned anything because we do not understand what is happening 

in the ‘magic box’. The first step is to determine whether there is a problem and whether 

AI has the capacity to be part of the solution. The better approach would use the wealth 

of information on a large patient series with known outcomes, including radiomic features 

extracted from the lung scan, and feed those features into a machine learning (ML) based 

artificial neural network (ANN) and train it based on a binary grounded truth of disease of 

interest versus no disease of interest. In doing so, the ANN will identify specific inputs or 

features that individually or collectively provide the highest predictive capability for the 

disease. It may reveal that the lung scan plays an important role or no role at all. In the 

case of the former, potential to further automate through DL and convolutional neural 

network (CNN) might be justified. In the case of the latter, it would avoid the wasted time 

and money associated with a DL approach. For those considering projects to develop a 

footprint in AI: 

 Consider a problem where the solution provides a good outcome rapidly and use 

that to build momentum (early win).  

 Avoid taking on a high investment (time, resources, energy and funding) project 

that provides no reward for a long time. 
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 Ensure the outcome is not trivial. Address a problem that has impact and will 

generate attention with success. 

 Focus your efforts on projects that tangibly connect to nuclear medicine rather 

than peripheral areas of interest. 

 Ensure your team is comprised of credible colleagues (internally and externally). 

 Recruit a team comprised of complementary skills associated with enthusiastic 

colleagues who can accelerate both the project and resulting AI momentum. 

 

Developing an AI strategy for your research team or clinical department is not an 

overnight journey. Do not expect the exciting project convolved today to have clinical 

impact any time soon. Consider the scenario where a data rich department that trains an 

ANN or CNN to perform a task and then validates that algorithm (1-3). This scenario 

represents almost all of the current literature on ML and DL in nuclear medicine. This is 

internally valid data that, with success, provides an algorithm that can reliably perform the 

prescribed task to enhance internal process and outcomes. Commercialization of these 

algorithms for more broad impact is a much more difficult process. Firstly, the process of 

data entry, sharing and management needs to overcome issues of privacy and security 

(4). Secondly, the internal dataset may contain local bias that threatens external validity. 

This requires rigorous validation with external data. Thirdly, the algorithm may be specific 

for internal protocols and equipment that does not hold true when parameters or 

equipment change. For example, the ANN scaling and weighting associated with 

predicting cardiac events in 123I mIBG heart failure patients (5) changes substantially if 

the uptake phase was undertaken in temperatures that vary by as little as 2 degrees 

Celsius, the time post injection to scanning time varies, the collimator or energy window 

varies, and with resolution / sensitivity of specific gamma cameras. Over and above these 

variations, changing the acquisition or reconstruction parameters will also change scaling 

and weights. This provides an insight into the discrepancy between the enormous 

potential applications of ML and DL in nuclear medicine and radiology, and the actual 

number of commercially available algorithms approved by the US FDA.  

 



5 

 

Consideration should be given to how the ML output can be neatly integrated into existing 

graphical output of nuclear medicine scans. This, in part, also speaks to the 

commercializability of the algorithm. The addition of ML based risk stratification and 

scoring is a logical step. Consider figure 1 (left) from the context of feasibility and clinical 

utility of a CNN driven risk score for pulmonary embolism which could be summarized 

and displayed in a simple format. Perhaps figure 1 (right) is an option where the perfusion 

SPECT is segmented against the accompanying low-dose CT to predict pulmonary 

embolism. Segmentation, risk scoring of individual lesions and a total disease burden 

might be helpful for patients presenting for evaluation of metastatic spread to bone (figure 

2). These are all mock-ups for potentially useful AI projects to provoke your own thoughts 

and ideas. These examples should not constrain your vision, with innovative applications 

of AI well beyond these simple examples including classification, localization, detection 

and segmentation projects. 

 

 

Machine Learning Examples 

The following are two simple ML projects using an ANN. This kind of approach can be 

undertaken with custom development tools or using commercial software packages. A 

project identified regional analysis of myocardium immediately adjacent to infarcted tissue 

and the associated 123I mIBG washout as the key predictor of cardiac event in heart 

failure patients (6). This was to provide richer insights using regional SPECT analysis 

than the previously described global approach to planar analysis on the basis that the 

pathology cascades from regional to global. The conventional statistical analysis for the 

outcome was complex, individualized but provided the greatest single predictor of cardiac 

event and, thus, need for an implantable cardioverter defibrillator (ICD).  

 

The emergence of capability in developing ANN and their use as tools for data analysis 

in parallel to conventional statistical analysis saw the data re-analyzed. The advantage of 

the ANN is that it examines all variables in a manner that removes duplication (even if 

highly correlated) and redundancy, weights variables to optimize the predictive outcome 
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and in doing so identifies the variable or combination of variables that provides the 

greatest predictive power. The ANN identified the same single best predictor as did 

conventional statistical analysis (washout from tissue immediately adjacent to the 

infarcted tissue) but also determined that the combination of 2 very simple variables 

provided highest predictive capability (figure 3, top) (6). In this case, the ANN was not DL 

or CNN but rather a ML tool designed to analyze more critically the relationships between 

variables in relation to predicting the outcome (cardiac event). 

  

The ANN architecture initially comprised of 84 scaling layer inputs, 3 hidden layers of 6 

nodes each using a logistic activation function for the binary output layer. The weighted 

squared error method was used to determine the loss index and the neural parameters 

norm was used for the regularisation method. A Quasi-Newton training method was 

adopted and the architecture optimized at 2 inputs (change in LVEF and planar washout), 

2 hidden layers of 6 and 1 node respectively, and a binary output. This was evaluated 

using receiver operator characteristics (ROC) analysis demonstrating an area under the 

curve of 0.75 which correlated to a sensitivity of 100% and specificity of 50%. The ANN 

indicated that the best predictor of a cardiac event is the coexistence of a decrease in the 

LVEF of 10% or greater and a planar washout of 30% or greater. 

 

A second example was part of a detailed analysis of metrics to characterize injection 

kinetics in PET using topical sensors (7). The commercial software provided a number of 

metrics and scores for interpretation by users. While individual metrics provide useful 

tools, combining the errors associated with each produced an overall larger error. There 

were 45 input variables in 863 patients using a binary classification of dose extravasation 

or no dose extravasation. The heat map / correlation matrix identified a number of 

redundant variables and the highest correlation scores associated with tc50 (0.838), 

ndAvgN (0.749), and CEnd ratio (0.721); consistent with the conventional statistical 

analysis. A 60:20:20 instances split was used for training, selection and testing. The ANN 

architecture included 3 hidden layers of 5, 5 and 1 nodes respectively, using a logistic 

activation function for a binary output. As with the first example, the weighted squared 
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error method was used to determine the loss index, the neural parameters norm was used 

for the regularisation method, and a Quasi-Newton training method was employed. The 

final architecture of the ANN reflects the optimized subset of inputs with the lowest 

selection loss, in this case, 4 inputs, 3 hidden layers of 3, 4 and 1 node respectively, and 

a binary output (figure 3, bottom). It is worth noting that the purpose of removing 

redundancy and optimising both the number of inputs and the complexity (number and 

depth of nodes) is to minimise over- or under-fitting. This was evaluated with ROC 

analysis that demonstrated an area under the curve of 1.0 correlating with a sensitivity of 

100% and specificity of 100% although binary classification testing revealed a less than 

perfect predictive model with classification accuracy of 0.75.  

 

Code, Frameworks and Libraries 

The tools for AI (figure 4) can be generally classified as datasets (serving the apatite of 

DL for data), architecture (functional model), framework (to enhance functionality), 

hardware (CPU, GPU etc), libraries (sources of datasets, architectures and frameworks), 

and code (language). Python (https://www.python.org/doc/) is a high level open source, 

fairly simple and intuitive programming language that can be used for direct coding in ML 

and DL or the source code for Keras based network development (application training 

interface). It is not the only programming language used for CNN development but is 

perhaps the most common and certainly the most accessible and usable for those early 

developers. NumPy (https://numpy.org/) is an extension package for Python that allows 

algebraic functions, Fourier transformation, integration of Python code with other types of 

code (Fortran and C for example). NumPy is like adding the scientific calculator to the 

standard calculator, enhancing Pythons scientific functionality. 

 

Keras (https://keras.io/) is a deep learning library that runs as an application programming 

interface (API) for python in conjunction with TensorFlow. PyTorch (https://pytorch.org/) 

is an alternative open source library of tools for training phase platforms. TensorFlow 

(https://www.tensorflow.org/) is a graphics-based computation platform that stores data 

in objects (tensor) rather than integers or strings. It is used as a backend platform for 
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CNN deployment but can include Keras for broader application in the training phase 

providing an end-to-end platform. The framework and associated libraries are described 

as the ecosystem tools while the architecture and datasets are the landscape. Caffe 

(https://caffe.berkeleyvision.org/) is the University of California, Berkley DL framework 

and is useful for those a little more adventurous with DL research. KNIME 

(https://www.knime.com/) is a DL analytics platform for CNN development, training and 

implementation. KNIME integrates with the Keras DL architecture and the TensorFlow 

ML library. Theano (http://deeplearning.net/software/theano/) is a similar library for 

scientific extension of Python as NumPy with additional features associated with speed 

and optimization. Deeplearning4j (https://deeplearning4j.org/) is a Java based, open 

source DL library that can be integrated with Keras as the Python API. Pandas 

(https://pandas.pydata.org/) are powerful data analysis toolkits for Python; essential a 

library of tools for those using Python for data analysis.  

 

Convolution Neural Networks 

The CNN provides a rich range of opportunities for development of AI projects. This 

includes CNNs for auto-segmentation of complex datasets, disease detection and 

segmentation, image reconstruction methods, development of pseudo-CT for attenuation 

correction of PET/MRI or PET alone, scatter correction and de-noising of images, and 

radiation dosimetry on serial PET images. These approaches could adopt a variety of 

CNN architectures (eg. AlexNet or VGGNet), encoder/decoder architectures (eg. UNet) 

and generative adversarial networks. An entry level CNN project might avoid the 

complexity of dynamic data or tomographic data. Instead, a simple CNN architecture (eg. 

AlexNet) could be used either using direct python coding or via commercial software (eg. 

Deep Learning Toolbox from MATLAB - https://au.mathworks.com/products/deep-

learning-hdl.html) to run a simple classification project on planar images. Consider a 

simple import of a lung perfusion scan into a CNN trained against known cases of 

pulmonary embolism or otherwise. The CNN, once trained and validated, could triage 

perfusion scans with findings consistent with pulmonary embolism for more urgent 
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reporting. This avoids the greater complexity of comparing ventilation studies because 

the role is to triage, not to diagnose (eg. the graphical abstract).   
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Summary/Conclusion 

AI and ML have almost infinite applications in nuclear medicine and medical imaging. The 

examples above are far from exhaustive. They provide a narrow snapshot of potential 

applications designed to inspire readers to think outside the box at problem solving using 

AI and ML. The key consideration is identifying a problem that has tangible benefits to be 

solved and identifying the appropriate tool to solve it. In many cases, problems do not 

need AI, ML or DL to solve. Frequently, the simpler and less resource intensive ML 

approaches are ideal for problem solving. Indeed, the plethora of ML based applications 

in nuclear medicine and medical imaging are not only accessible starting points for a 

developing institutional AI program, but also provide solutions that can have a significant 

and immediate impact on practice and patient outcomes. Nonetheless, ML applications 

are often overlooked in favor of the higher order, perhaps more “prestigious” DL 

approaches that demand higher levels of expertise, time and resources. A logical 

approach would be to use ML to examine the problem and identify amongst the broader 

ML projects which problems are most likely to benefit from a DL approach.  
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List of Figures 
 
Figure 1: On the left is a mock summary output for a CNN based risk algorithm for 
pulmonary embolism using ventilation and perfusion mismatch. On the right is a mock 
summary output for a CNN based risk algorithm for pulmonary embolism using low-dose 
CT and perfusion SPECT mismatch. The coronal and sagittal slices represent 2 different 
patients; one with mismatch consistent with a high likelihood of pulmonary embolism 
(coronal) and the other matching defect associated with lower likelihood of pulmonary 
embolism (sagittal). 
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Figure 2: Mock summary output for a CNN based risk algorithm for skeletal metastases 
with probability classification for various outcomes and risk assessment for individual 
lesions. 
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Figure 3: The final ANN architecture optimizes inputs and network complexity for the heart 
failure cohort (top) and the dose extravasation cohort (bottom). Here, the number of 
inputs, and the number and complexity of nodes are optimized. 
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Figure 4: Schematic representation of the relationships between hardware, code, 
frameworks, architectures, libraries, datasets and the deep learning solution. The DL 
landscape is defined by two orange zones and the DL ecosystem by the purple and yellow 
zones. 

 

 

 


