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Abstract

The emergence of artificial intelligence (Al) in nuclear medicine and radiology has been
accompanied by Al commentators and experts predicted that Al would make radiologists in
particular extinct. More realistic perspectives suggest significant changes will occur in medical
practice. There is no escaping the disruptive technology associated with Al, neural networks and
deep learning; the most significant perhaps since the early days of Roentgen, Becquerel and
Curie. Al is an omen, but it need not be foreshadowing a negative event but rather heralding
great opportunity. The key to sustainability lies not in resisting Al but in having a deep
understanding and exploiting the capabilities of Al in nuclear medicine while mastering those

capabilities unique to the human resources.



Introduction

Artificial intelligence (Al) is a general term used to describe algorithms designed for problem
solving and reasoning. Applications in nuclear medicine and radiology have been widely
documented. A subset of Al is associated with neural networks. In medical imaging, a neural
network is an image analysis algorithm composed of layers of connected nodes (1). The nodes
can be in the order of hundreds to millions and simulate the neuronal connections of the human
brain (2). Nodes receive information from other nodes or patterns of nodes. Communication
from one node to other nodes occurs when a threshold is exceeded and the outputs from those
nodes are weighted (figure 1). The basic principle is to maximise the number of correct answers
by comparing artificial neural network (ANN) estimates with a reference (grounded truth) and
then adjusting the weightings on each node based on the error (2,3). There may be hundreds or
thousands of iterations required to make the adjustments during the training phase of
developing an ANN. Clearly the more data that is used to train the ANN, the greater the accuracy
of the inference phase. Through each iteration and subsequent adjustment of the nodes, a
mathematical solution converges on a more accurate solution in a similar manner that we might
think about iterative reconstruction of single photon emission computed tomography (SPECT)

and position emission tomography (PET) data.

An ANN typically has three phases; the training phase where the ANN learns, the validation phase
where the learning of the ANN is evaluated against a second dataset, and the inference or
application phase where the ANN is applied to actual cases. The training phase follows a
diminishing return principle, eventually reaching a point where additional iterations do not
improve the results or the improvement is negligible (figure 1) (2). The training phase can be
supervised (grounded truth is human interpreted training data) or unsupervised (no grounded
truth, learning based on pattern recognition) (4). Following the training phase, a second data set
can be used to test the accuracy of inferences of the ANN to provide validation of the algorithm
before being used in clinical and research applications (figure 1). The role of big data in medical
imaging is to provide a reliable and large training data base for machine learning (ML),

representation learning and deep learning (DL) algorithms to learn and produce accurate
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outcomes (1). There are, however, potential clinical and research roles for ANNs in parallel to
conventional statistical analysis in small data to identify key inputs (features) or combination of

inputs not gleaned from multi-variate analysis.

In the validation phase, a second smaller data base of features or images are used for the ANN
to evaluate and those inferences are compared to a grounded truth (figure 2). This represents
the testing and validation phase and predicts the accuracy of the ANN when used clinically or in
research (5,6). That degree of accuracy can then be expected in the application phase where the
neural network makes inferences about images without a grounded truth (supplemental figure
A). An ANN would have data or features entered into the input layer of the algorithm as depicted

in figures 1.

DL associated with convolutional neural networks (CNN) have a higher order functionality where
the neural network itself is trained to identify and extract features from images (7) (figure 2). The
term convolution means the mathematical combination of 2 functions to generate a third
function. As depicted in figure 2, the input has a number of image dimensions (X, Y and Z) and a
number of images (eg. SPECT slices). The image itself has specific features identified and
extracted into a convolution feature map (7). A kernel or rectified linear unit (ReLU) is an
activation filter through which convolution data are pooled (7). Multiple convolution, kernel and
pooling iterations may occur before the pooled features are flattened for entry into the input
layer of the fully connected neural network (7). The depth of the CNN gives rise to the expression

‘deep learning’.

Anatomy of Machine Learning
ML algorithms, including ANNs have 3 key components (6,8):
1. The mathematical model which is used to describe or explain the relationships within the

data. Specifically, the relationships between inputs (features) and outputs (outcomes).



2. The cost function which is an evaluation of the accuracy of the mathematical model. This
is @ measure of how well the model predicts and outcome and the error between
prediction and expected is the loss function.

3. The data itself is necessary but varies for the training phase, validation phase and then
the inference phase. Big data from multi-centre trials may be used for the training phase
and a smaller population of cases with known outcomes could be used for the validation
phase. Typically, the same database is used and randomly split (eg. 80:20) to produce a
large training set and a smaller but statistically significant validation set. A separate
population of cases can then be used as the inference phase for further research (deeper
validation with external validity) or for clinical decision making.

There are a variety of ML algorithms available and the preferred approach (eg. CNN versus ML)
will depend on the type of data and the purpose. For simplicity, the following discussion will
assume a binary output (eg. cardiac event or no cardiac event) and rich input data of extracted
features in a model that resembles figure 1. One should keep in mind that this is a model meant
for aiding the understanding of nomenclature and processes rather than being a fit for all ANNs;
in the same way human anatomy has normal variants and differs amongst mammals despite

having some commonality.

Consider a number of potential input features (eg. 4) in 1000 patients in a database. A single
binary output might be a cardiac event during the follow-up period or no cardiac event in the
follow-up period. The ANN architecture would include 4 scaling layer inputs, a number of hidden
(perception) layers (let’s assume 4) of multiple nodes in each hidden layer (perhaps 4, 8, 8, 3)
(figure 3). The scaling layer is to ensure all inputs are within the prescribed range and contain
input statistics (eg. mean, standard deviation, minimum, maximum etc). Each node (perceptron)
in the perception layers receives numerical inputs (X1, X2, X3 etc) which have weightings (W1, W3,

W3 etc) and combined with a bias (B) to produce a single net input value (C) where (8,9):

combination = bias + Z weights - inputs



An activation function (A) defines the output (Y) of the perceptron (liner, logistic, rectified linear,
hyperbolic tangent etc) (5,7,9,10). In the case of a linear activation function, the activation is
equal to the net input value (5,7,9,10). The more common logistic activation function is a sigmoid

function where:

1

activation — ——
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The ANN works toward a probabilistic layer (eg. binary, continuous, competitive, softmax etc) or
probabilistic output function. Between the last perception layer and the probabilistic layer, an

unscaling layer is needed to convert outputs to the original units (8-10).

The architecture needs to be trained and optimised. The loss index is a tool used to measure the
error associated with the algorithm executing its task (error term) and to measure the quality of
the data the ANN is learning (regularisation term) (5,7,8,10,11). The error term can be measured
in numerous ways including mean squared error, normalised squared error, weighted squared
error (WSE) or Minkowski error (9). The WSE method could be used to determine the loss index
especially when there is an imbalance between positive and negative outputs (eg. a ratio of 1.2:1
against grounded truth). Regularisation relates to the size of changes in outputs in response to
changes in inputs; small changes producing small changes being considered regular. The
regularisation term is summed with the error term which will reduce weights (W) and biases (B)

to produce a smoother output (9,10).

Optimisation is an adjustment to the weightings on individual nodes (perceptrons) in order to
minimise (optimise) the loss index (5,8-10). This is achieved using an iterative process of
successive adjustments to the weightings. Gradient is the rate of inclination or declination (slope)
and represents the learning rate. Gradient descent is an optimisation method that evaluates a
progressive diminishing rate of learning with each iteration (5,9-11). That is, the cost function is

decreasing which means the loss is decreasing and the minimum point could be used to terminate



the cycle (before loss starts to increase again) (5,7,8,10,11). Large data sets may not be able to
be processed concurrently and this requires division of the data. An epoch refers to the entire
data set passed forward (forward propagation) and backward (back propagation) through the
ANN once. This is often referred to as an iteration and for small datasets an iteration and an
epoch are the same. In larger datasets the, the data may need to be broken into batches of
smaller units. Each time a batch is forward propagated and back propagated through the ANN it
is an iteration. Once all batches are passed through once, it is an epoch. For the data set of 1000
patients, the data may need to be broken into batches of 200 which means we have 5 batches
requiring 5 iterations to complete 1 epoch. The optimisation algorithm, therefore, changes
parameters between successive epochs (parameter increment) to minimise the loss index until a
specified condition is met (eg. minimum value reached, margin loss improvement equals a set
value, gradient equals pre-set value, maximum number of epochs reached, maximum time
reached) (5,10). The optimisation algorithm itself defines how parameters are optimised (9,10).
The Newtonian method is computationally demanding but more accurate; employing the Hessian
of the loss function (second derivative matrix) (9). A Quasi-Newtonian method may be a
preferred option and this approach uses gradient information to estimate the inverse Hessian
(mathematical function using a square matrix of second order partial derivatives) for each
iteration of the algorithm ignoring second derivatives and reducing computational demand.
Other approaches include gradient descent, conjugate gradient, Levenberg-Marquardt
algorithm, stochastic gradient descent and adaptive linear momentum. The loss function
associated with the training phase estimates the error associated with the prediction and the
grounded truth for the dataset (5,9,10). The selection loss is an error measure of the ANNs
generalisability to new data or agility. These loss functions can be used to optimise the number

of hidden layers / iterations in the final architecture.

The final architecture of the ANN or model selection needs to consider selection loss, or minimise
the error associated with the order and range of inputs (5,7,9,10). Order selection relates to
depth of the ANN on their influence on the output and its accuracy by defining the number of

nodes in hidden layers (5,9,10). It is important to balance the order selection with the complexity
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of the data to avoid under or over fitting (4) (figure 4a). Similarly to the training error, the
selection error measures the accuracy of the ANN applied to new data (generalisability) (5,9,10).
An incremental order selection algorithm starts by measuring selection loss for a small number
of nodes and incrementally adds nodes until the selection loss is optimised (meets pre-
determined value). Conversely, a decremental order algorithm starts by measuring selection loss
for alarge number of nodes and incrementally removes nodes until the selection loss is optimised
(meets pre-determined value). In this case, knowing the low complexity of data, the user has
elected to begin with a more complex ANN than necessary which will see the decremental order

algorithm reduce the complexity in the ANN.

Inputs selection (figure 4b) defines which specific features should be included in the ANN inputs.
The inputs selection algorithm determines which input features produce the smallest selection
error and, thus, provide the best generalisability for the ANN to new data (5,9,10). There are
several algorithms that can be used. The pruning method starts with all inputs and incrementally
removes inputs with the lowest correlation until the selection loss starts to rise. A growing inputs
method can also be used to calculate the correlation for every input against each output in the
data set. Beginning with the most highly correlated inputs, incrementally inputs are added to the
network until the selection loss increases. The final architecture of the neural network reflects

the optimised subset of inputs and order with the lowest selection loss (supplemental figure B).

A number of metrics can be employed to test the errors in the neural network. The final
architecture can then be evaluated using a number of tests for robust validation using a second
set of data (or validation partition of the original data set) (9,10). The loss index for the final ANN
can be calculated by comparing the prediction output with the grounded truth (7). A number of
tools are used in combination for validation including, but not limited to; sum squared error,
mean squared error, root mean squared error, normalised squared error, Minkowski error, cross
entropy error, hinge error and linear regression analysis. Receiver operator characteristics (ROC)
analysis produces an area under the curve (AUC) that correlates with a sensitivity and specificity

(9,10). This is further reflected in the confusion matrix (true positives, true negatives, false
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negative and false positive). ANN performance may also be expressed or displayed as cumulative
gain (benefit of using the ANN over a random guess), lift chart (ratio of positive events using the
ANN to those without the ANN), conversion rates (percentage of predicted cases with and
without the ANN), and profit chart (ANN gain over random guess). Much of the literature on ML
applications in nuclear medicine and radiology are in some way the validation phase of the ANN.
This may include statistical analysis of the ANN capability against human interpretation and a
“gold standard”. It may also include an evaluation of the predicted gain in economic or health
outcome terms with and without the ML model. Post validation, the ML algorithm can be
implemented by exporting and applying the mathematical model. For simple ML and ANN
models, this may represent an export of the mathematical expression in simple code language

like Python for incorporation in mobile device Apps on websites.

An example of this application is previous work with 23lodine meta-iodobenzylguanidine ('%3I-
mIBG) radionuclide imaging in heart failure [Igbal!!!]. Traditional analysis with multivariate
approaches demonstrated regional washout associated with territories adjacent to infarcted
myocardium was superior to traditional planar approaches to uptake and washout in predicting
cardiac events [Igbal]. Subsequently, the same data was evaluated using an ANN in the method
described above using 84 input variables and a single binary output (cardiac event or no cardiac
event in the follow-up period). Training and validation phases optimised the number of inputs at
just 2; a change in LVEF (A >-10%) and 1231 mIBG planar global washout (>30%) (12,13). The ANN
in this case revealed predictive capability not illuminated by traditional regression methods,

highlighting the value of ANN/ML in parallel to conventional statistical analysis.

Anatomy of a CNN

With the general principles of an ANN outlined above, scaffolding a deeper insight into the CNN
process might be of value. As outlined in figure 2, a CNN is comprised of convolution and pooling
layers, and the fully connected layers of a neural network. The CNN differs from the ANN
described in figure 3 in that the features are extracted from the images and the output is some

form of classification (7). As described below, the CNN transforms 2-dimensional image data
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through forward propagation but can also be applied to 3-dimensional data sets such as SPECT

and PET (7,11).

Convolution is the extraction of image features using a linear operation that applies a kernel
(typically 3 x 3) to a subset array of image elements (pixels) or input tensor (5,7-9,11,14) (figure
5). This process is not dissimilar to the application of a 9-point smoothing filter to planar images
in nuclear medicine. The kernel is positioned over elements in the input tensor, with the distance
between each successive position representing the stride (5,7-9,11,14). A stride of 1 means that
the kernel is positioned centred over each element of the input tensor while a stride of 2 would
indicate positioned centred over every second element of the input tensor. This down sampling
of feature maps with strides greater than 1 can be better achieved in the pooling function (5,7-
9,14). The product of the individual elements of the input tensor and the kernel are summed to
produce a single numerical value (and position ordinates) into the feature map (output tensor)
(5,7-9,14). A variety of kernels can be applied in a stepwise manner producing a number of
convolution layers (figure 2). Of importance in convolution is that while the X and Y dimensions
of the input tensor are compressed, the Z dimension does not change. The post convolution
feature map is then passed through a non-linear activation function that, as previously described,

is typically the ReLU before entering the pooling layer (5,7-9,14).

Pooling reduces the in-plane (X,Y) dimensionality of feature maps by applying a down sampling
operation (5,7-9,11,14). Max pooling and global average pooling are 2 common approaches. As
the name suggests, max pooling creates an output equal to the maximum value within a patch
of data in the feature map (5,7-9,14). A 2x2 filter with a stride of 2 means that each set of 4
elements is represented as a single value equal to the maximum value and all other data is
discarded (figure 6). Global pooling on the other hand, represents a feature map as a single value
equal to the mean of the element values; essentially down sampling a feature map to a 1x1 array
(5,7-9,14). This is typically applied once immediately prior to the fully connected layers, however,

the max pooling method is more common (5,7-9,11,14). Multiple sequential convolution, kernel
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and pooling processes produce layers of data that are transformed into a 1-directional array of

vectors (numbers) through a process called flattening (5,7,11).

A parameter is a variable automatically learned by the CNN while a hyper-parameter is a variable
that needs to be set (7). These vary in the different layers of the CNN (figure 7). In the convolution
layer, kernels are the parameter and kernel size, kernel number, stride and activation function
are the hyper-parameters. The pooling layer has no parameters but the pooling method, filter
size and stride are all hyper-parameters. The fully connected layer of nodes uses weights as the

parameters while the activation function and the number of weights are the hyper-parameters.

There are a wide variety of applications of CNN and DL in nuclear medicine but the application of
a CNN is effectively demonstrated in recent dementia studies. SPECT images with known
outcomes were used to train a CNN to evaluate the images themselves and identify key features;
specifically the cingulate island sign indicative of dementia with Lewy bodies (15). Perhaps a more
important approach would be the use of a CNN trained to identify specific features on the images
themselves of findings of an urgent nature; pulmonary embolism on a lung scan for example.
Rather than the CNN providing a definitive diagnosis, a list base report could be initiated and the
findings used to triage a positive outcome to the front of the reporting list. Clearly, a CNN could
be readily trained to identify features to drive automated segmentation or region identification

and this may have significant applications in radiation dosimetry (16).

There is, however, a requirement for a degree of caution with application of DL and CNNs. While
a CNN has the capability to identify features or relationships between features in a large volume
of data not possible for a human observer, unsupervised learning may see unusual features
identified. For example, consider a CNN trained to identify pulmonary embolism on a lung scan.
If that CNN was shown to be more accurate than a human observer in detecting pulmonary
embolism, then it makes sense that the CNN has identified features not typically considered by
the human observer. This should prompt enquiry to educate the human observer to previously

unconsidered features. In theory, the entire process improves. It may, however, reveal that
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instead of identifying features in the lung fields themselves, the CNN may have learned other
features that strongly correlate with pulmonary embolism; ECG leads insitu, annotation
indicating referral for emergency, patient age or gender. Anecdotal discussion at conferences
reveals a CNN to detect pneumonia on chest xrays was revealed to be making decision based on

whether the study was performed in the department or by mobile xray.
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Discussion

While there has been an emergence of medical literature outlining the applications of DL and

CNNs in nuclear medicine and radiology, Al, ML, ANNs and CNNs afford numerous other

opportunities. There are a number of key areas Al, ML, ANN or DL that have been successful or

potentially impactful in radiology (2,3,17) and these are equally apt for nuclear medicine:

* To inform diagnostic decision tree and optimising procedure choice by predicting positivity
rate amongst similar patients.

* New image reconstruction methods that produce images from lower radiation dose studies
(eg. PET and SPECT), generation of pseudo-CT for attenuation correction, or with reduced
imaging time (eg. MRI).

* Quality assessment algorithms built into systems to improve image quality and decrease
repeat studies.

* Image triage algorithms that identify cases likely to be positive or that may have an urgent
finding, allowing prioritisation of reporting and earlier intervention.

* Computer-aided detection, automated image annotation and information extraction.

* Al methods that explain analysis / interpretation and provide preliminary reporting.

* Lesion or disease detection (enhance computer aided detection) and classification.

* Automated segmentation, identification and extraction of features from images (radiomics)
and quantitation.

Detection of incidental findings are important potential application of Al and ANNs not generally

discussed in the literature but readily expressed in a mathematical algorithm (variation from

normal). The emergence of the important role of radiation dosimetry modelling in radionuclide
therapy will elevate precision nuclear medicine and theranostics; no doubt unveiling an

important application of Al and ANNSs.

The future of Al is very promising and looks beyond DL. Patrick Ehlen from LoopAl Labs explained

in 2018 at a conference in Cologne Germany (https://www.loop.ai/ai-the-end-of-deep-

learning?contentid=1302036) that the next generation of Al will go beyond DL. He used the liar

paradox from star trek to highlight that Al is trained to solve problems logically. The human brain
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is capable of both logical thought but also to operate in the sphere beyond logic sometimes
referred to as illogical but this agility is "super logic". The simple liar paradox of Al interpreting 2
pieces of information; the first being "everything Harry says is a lie" and the second coming from
Harry saying " am lying" defies first order logic

(https://www.youtube.com/watch?v=QgCiwOwD44U). Higher order logic that would prevent Al

being outwitted by human "super logic" requires a framework of quantum based logic. While a
tutorial on quantum computation is beyond the scope of this manuscript (18), the basic premise
is that Al does not understand pragmatics. Humans process the contrasting context associated
with pragmatism. These different foundation contexts could be seen as different basis vectors in
guantum probability theory and allow Al to develop higher order reasoning and problem-solving
skills. This has the potential to make dramatic steps in interpretation of complex images and
pathological states associated with PET, SPECT, MRI and CT. Nuclear medicine and radiology has
its strength in making clinical judgements and decisions based on data and feature extraction,
not in the feature extraction and analysis itself (19). Thus, Al techniques like ML and DL provide
an opportunity to enhance the accuracy and efficiency of the physician or radiologist without
threatening redundancy. It may represent a shift in practice, with rudimentary tasks Al has a high
degree of capability being lost to the radiologist or physician but this simply provides more time
to focus on the higher order semantic tasks beyond, but enhanced by, the capabilities of Al. On
the surface, this is a strong argument against the idea Al may make the physician or radiologist

redundant. Quantum logic in Al may renew that debate.

Conclusion

Al has penetrated the daily practice of nuclear medicine over recent decades with little
disruption. The emergence of ANNs and CNN applications has seen a significant shift in the
landscape whose opportunity outweighs the threat. Nonetheless, understanding of the potential
applications and the principles of Al, ANNs and DL will equip nuclear medicine professionals for
ready assimilation; averting the ‘doomsday’ fears permeating radiology. Counter to the concerns
amongst radiologists, in nuclear medicine the disruptive potential of the technology is perhaps

of greatest impact on technologists and physicists rather than physicians.
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Figure 1: Training phase of a neural network using extracted features as inputs. The grounded
truth defines this as a supervised artificial neural network (ANN). This is also the structure of an
ANN that might be used as an analysis tool in parallel with traditional statistical analysis;
importing data from a spreadsheet for example. In this example, all nodes are depicted as being
connected to all others in adjacent layers and represents a “fully connected layer” which is more
typical of convolutional neural networks. The validation phase evaluates the trained ANN against
a new data base of known cases to determine accuracy. Adapted with permission (1).
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Figure 2: Basic structure of a convolutional neural network (CNN) where the network extracts the
radiomic features, produces a convolution function, pools the data through a rectified linear unit
(ReLU) kernel and flattens the pooled feature map for input into the fully connected hidden layers
of the neural network. Reprinted with permission (1).
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Figure 3: Overview of the anatomy of an ANN. A single node (C) can have multiple inputs (X) with
different weighting factors (W) and a bias (B) but a single output (Y) via an activation function
(A). The multiple lines represented exiting each node are the same output being delivered to
multiple next layer nodes.
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Figure 4: Schematic representation of a good fit versus under and over fitting associated with
selection loss (A). Optimisation of the selection loss (B) to determine ANN complexity and node
number (order) using a decremental order algorithm (left) with the arrow indicating a reasonable
cut-off for total node number. Optimisation of selection loss to determine inputs (features) to be
included (right) using a growing inputs algorithm with the arrow indicating a reasonable cut-off
for inputs.
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count amongst 4 connected elements (patch) to represent that data in the pooled feature map.
Consecutive blocks of 2x2 elements means a stride of 2. The final pooled feature map
immediately before input into the neural network can then be flattened from 2 dimensional data
into a single dimension; this approach avoids the need for global pooling.
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Figure 7: The CNN will have a number of convolution and pooling layers before flattening and
input to the neural network. A number of kernels can be used on the same input tensor to
produce layers of feature maps via the rectified linear units (ReLU) for pooling and eventually
flattening.

23



Patient data
Serum analysis
Radiomic features
Quantitation
Biomarkers
Outcomes

Study sample

Supplemental figure

Inference phase

Result
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A: A trained and validated ANN can be used, with reasonably expected

accuracy, to make inferences about clinical or research cases.
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Final neural network architecture convolved from figure 7 with only 2

inputs, 3 hidden layers of 2, 4 and 3 nodes respectively, an unscaling layer and a single binary
output.
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