Impact of Time-of-Flight PET/CT with a Large Axial Field of View for Reducing Whole-Body Acquisition Time

Go Akamatsu1,2, Koji Uba3, Takafumi Taniguchi1, Katsuhiko Mitsumoto1, Akihiro Narisue3, Yuji Tsutsui4, and Masayuki Sasaki1

1Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; 2Division of Molecular Imaging, Institute of Biomedical Research and Innovation, Kobe Japan; 3Department of Radiological Technology, Saga University Hospital, Saga, Japan; and 4Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan

PET is a molecular imaging technique that provides metabolic information useful for patient care and for monitoring the pharmacokinetics of drugs (1,2). High image quality is required for an accurate diagnosis (3). PET image quality is strongly dependent on scanner sensitivity (4), which in turn is associated with the length of the axial field of view (FOV) (4–6). A PET system with a longer axial FOV has a higher sensitivity because there are a large number of detectors (Fig. 1). In addition, the number of bed positions can be reduced because of the large axial range for whole-body PET. PET scanners with a longer axial range can be used to reduce the patient dose, decrease the scanning time, or reduce the image noise while maintaining other constant image characteristics. To date, however, there has been no comparison of actual PET images acquired on systems having different axial FOVs.

In this study, we evaluated the PET image quality of 39- and 52-ring time-of-flight (TOF) PET/CT scanners and assessed the possibility of reducing the whole-body scanning time using a 52-ring TOF PET/CT scanner.

MATERIALS AND METHODS

PET/CT Scanners with 39- and 52-Ring Detector System

Two types of Biograph mCT scanner (Siemens Healthcare), one with a 39-ring detector system and the other with a 52-ring detector system, were used in this study (7). The specifications of the 2 PET scanners are shown in Table 1. The PET components of both the 39-ring and the 52-ring scanners are lutetium oxyorthosilicate scintillators 4 × 4 × 20 mm in size. The 39-ring scanner comprises a total of 24,336 lutetium oxyorthosilicate detector elements, covering an axial FOV of 16.2 cm. The 52-ring scanner comprises a total of 32,448 detector elements, covering an axial FOV of 21.6 cm. Both PET scanners operate with a 4.1-ns coincidence time window and a 435- to 650-keV energy window.

The CT component of the 39-ring scanner consists of a 128-slice multidetector helical CT scanner, whereas that of the 52-ring scanner consists of a 40-slice multidetector helical CT scanner. The CT scan parameters were 120 kV, automatic exposure control depending on body habitus, and 0.5-s rotation of the gantry in both PET/CT scanners. CT was performed to obtain a map for attenuation correction.

METHODS

PET/CT scanners with 39- and 52-ring detector systems were used in this study (Fig. 1). In addition, the number of bed positions can be reduced because of the large axial range for whole-body PET. PET scanners with a longer axial range can be used to reduce the patient dose, decrease the scanning time, or reduce the image noise while maintaining other constant image characteristics. To date, however, there has been no comparison of actual PET images acquired on systems having different axial FOVs.

In this study, we evaluated the PET image quality of 39- and 52-ring time-of-flight (TOF) PET/CT scanners and assessed the possibility of reducing the whole-body scanning time using a 52-ring TOF PET/CT scanner.

MATERIALS AND METHODS

PET/CT Scanners with 39- and 52-Ring Detector System

Two types of Biograph mCT scanner (Siemens Healthcare), one with a 39-ring detector system and the other with a 52-ring detector system, were used in this study (7). The specifications of the 2 PET scanners are shown in Table 1. The PET components of both the 39-ring and the 52-ring scanners are lutetium oxyorthosilicate scintillators 4 × 4 × 20 mm in size. The 39-ring scanner comprises a total of 24,336 lutetium oxyorthosilicate detector elements, covering an axial FOV of 16.2 cm. The 52-ring scanner comprises a total of 32,448 detector elements, covering an axial FOV of 21.6 cm. Both PET scanners operate with a 4.1-ns coincidence time window and a 435- to 650-keV energy window.

The CT component of the 39-ring scanner consists of a 128-slice multidetector helical CT scanner, whereas that of the 52-ring scanner consists of a 40-slice multidetector helical CT scanner. The CT scan parameters were 120 kV, automatic exposure control depending on body habitus, and 0.5-s rotation of the gantry in both PET/CT scanners. CT was performed to obtain a map for attenuation correction.
Evaluation of System Sensitivity

Following the National Electrical Manufacturers Association (NEMA) NU-2 2007 protocol, a phantom with 5 concentric aluminum sleeves 70 cm in length was used to evaluate the system sensitivity (NEMA PET Sensitivity Phantom; Data Spectrum Corp.) (8). The innermost tube was of fillable polyethylene with an inside diameter of 1 mm and outside diameter of 3 mm. The polyethylene tube was filled with an 18F solution having a specific activity of approximately 2–4 MBq/ml. The background activity levels of 5.31 and 2.65 kBq/ml simulated the normal soft-tissue uptake of patients who received high (7.4 MBq/kg) and low (3.7 MBq/kg) injected doses, respectively (10). PET data were acquired for 10 min in 3-dimensional list-mode and then were reconstructed using ordered-subsets expectation maximization (OSEM) and OSEM plus point-spread function (PSF) plus TOF algorithms. PET images with acquisition times ranging from 1 to 10 min were then reconstructed. The reconstruction parameters were as follows: 2 iterations, 21 subsets (OSEM + PSF + TOF) or 24 subsets (OSEM), a gaussian filter of 4 mm in full width at half maximum, and a matrix size of 256.

To evaluate the PET raw-data quality metric, the noise-equivalent counting rate (NECR) was calculated as follows:

$$\text{NECR} = (1 - \text{SF})^2 \times \frac{(T + S)^2}{(T + S + [k + 1]R)} \text{(kcps)}$$

where T is the true coincidence counting rate, S is the scatter coincidence counting rate, R is the random coincidence counting rate, SF is the scatter fraction, and $k = 1$ (noise random correction factor).

The true, scatter, and random coincidence counts were obtained from the full sinogram dataset of the PET data acquired over 10 min.

The PET image quality was physically assessed using the coefficient of variance on the background (CV_{BG}). We placed 12 circular regions of interest (ROIs), each 30 mm in diameter, on the axial slice of the sphere center and on slices ± 1 cm and ± 2 cm away for the background (total, 60 ROIs). The CV_{BG} was calculated as follows:

$$\text{CV}_{BG} = \frac{\text{SD}_{BG}}{\text{CBG}} \times 100\%,$$

where CBG is the mean activity of the 60 background ROIs and SD_{BG} is the mean of the SD of the 60 background ROI counts.

Additionally, the relative recovery coefficients (RC) were evaluated to estimate the image resolution for the 10-min acquisition data (10). All 6 spheres were encompassed by large, circular ROIs on the axial PET images. The relative RC for a j-mm hot sphere (RC_j) was calculated as follows:

$$\text{RC}_j = \frac{C_j}{C_{37}},$$

where C_j and C_{37} were the maximum values for a j-mm- and 37-mm-diameter sphere.

Evaluation of Image Quality

A NEMA International Electrotechnical Commission body phantom with 6 spheres of 37-, 28-, 22-, 17-, 13-, and 10-mm inner diameter (Data Spectrum Corp.) was used for this study. The spheres and background can be filled with 18F-FDG solution having a 4:1 activity ratio. The background activity was 5.31 and 2.65 kBq/ml. The background activity levels of 5.31 and 2.65 kBq/ml simulated the normal soft-tissue uptake of patients who received high (7.4 MBq/kg) and low (3.7 MBq/kg) injected doses, respectively (10).

PET data were acquired for 10 min in 3-dimensional list-mode and then were reconstructed using ordered-subsets expectation maximization (OSEM) and OSEM plus point-spread function (PSF) plus TOF algorithms. PET images with acquisition times ranging from 1 to 10 min were then reconstructed. The reconstruction parameters were as follows: 2 iterations, 21 subsets (OSEM + PSF + TOF) or 24 subsets (OSEM), a gaussian filter of 4 mm in full width at half maximum, and a matrix size of 256.

To evaluate the PET raw-data quality metric, the noise-equivalent counting rate (NECR) was calculated as follows:

$$\text{NECR} = (1 - \text{SF})^2 \times \frac{(T + S)^2}{(T + S + [k + 1]R)} \text{(kcps)}$$

where T is the true coincidence counting rate, S is the scatter coincidence counting rate, R is the random coincidence counting rate, SF is the scatter fraction, and $k = 1$ (noise random correction factor).

The true, scatter, and random coincidence counts were obtained from the full sinogram dataset of the PET data acquired over 10 min.

The PET image quality was physically assessed using the coefficient of variance on the background (CV_{BG}). We placed 12 circular regions of interest (ROIs), each 30 mm in diameter, on the axial slice of the sphere center and on slices ± 1 cm and ± 2 cm away for the background (total, 60 ROIs). The CV_{BG} was calculated as follows:

$$\text{CV}_{BG} = \frac{\text{SD}_{BG}}{\text{CBG}} \times 100\%,$$

where CBG is the mean activity of the 60 background ROIs and SD_{BG} is the mean of the SD of the 60 background ROI counts.

Additionally, the relative recovery coefficients (RC) were evaluated to estimate the image resolution for the 10-min acquisition data (10). All 6 spheres were encompassed by large, circular ROIs on the axial PET images. The relative RC for a j-mm hot sphere (RC_j) was calculated as follows:

$$\text{RC}_j = \frac{C_j}{C_{37}},$$

where C_j and C_{37} were the maximum values for a j-mm- and 37-mm-diameter sphere.

TABLE 1

Sensitivities of 39- and 52-Ring PET/CT Scanners

<table>
<thead>
<tr>
<th>Parameter</th>
<th>39-ring system</th>
<th>52-ring system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (kcps/MBq)</td>
<td>5.4</td>
<td>9.2</td>
</tr>
<tr>
<td>10</td>
<td>5.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Total sensitivity (kcps/MBq)</td>
<td>5.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>

$D =$ radial distance in from center of FOV.
Statistical Analysis

The CVBG values were compared by the t-test. In all analyses, a P value of less than 0.05 was considered to be statistically significant.

RESULTS

The system sensitivities of both the 39- and the 52-ring scanners are reported in Table 1. The system sensitivity of the 52-ring scanner was 66% higher than that of the 39-ring scanner.

The NECR values are shown in Table 2. The 52-ring scanner increased the NECR by approximately 60%, compared with that observed with the 39-ring scanner. The NECR increased in proportion to the radioactivity levels.

The PET images on both systems at various acquisition times are shown in Figure 2. In terms of background uniformity, the images acquired by the 52-ring scanner were superior to those acquired by the 39-ring scanner. The NECR increased in proportion to the radioactivity levels.

The relative RC curves for PET images taken using a 10-min acquisition are shown in Figure 4. The RC curves for both systems were nearly identical. The effects of the PSF and TOF for image resolution were also identical, irrespective of the number of detector rings.

DISCUSSION

The system sensitivity of the 52-ring scanner was 66% higher than that of the 39-ring scanner. As a result, a higher NECR and better image quality were obtained by the 52-ring scanner. In a previous study by Jakoby et al., the NECR of the 52-ring scanner was increased by approximately 50%–70% compared with that of the 39-ring scanner. Our results correspond to those of previous studies.

The CVBG value of the 52-ring scanner was approximately 10% lower than that of the 39-ring scanner at both activity levels. The CV of the 52-ring system with a 3-min acquisition was equivalent to that of the 39-ring scanner with a 4-min acquisition (P = 0.08).

The axial FOV of the 52-ring scanner was 5.4 cm (33%), longer than that of the 39-ring scanner. A large axial FOV

![Table 2](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NECR (kcps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52-ring high activity</td>
<td>115.9</td>
</tr>
<tr>
<td>52-ring low activity</td>
<td>59.0</td>
</tr>
<tr>
<td>39-ring high activity</td>
<td>72.0</td>
</tr>
<tr>
<td>39-ring low activity</td>
<td>37.8</td>
</tr>
</tbody>
</table>

![Figure 2](image)

FIGURE 2. PET images reconstructed using OSEM + PSF + TOF with various acquisition times, different activity levels, and 2 types of detector ring. In terms of background uniformity, images acquired using 52-ring scanner were superior to those acquired using 39-ring scanner.

![Figure 3](image)

FIGURE 3. CV for OSEM + PSF + TOF images in relation to acquisition times. CV of 52-ring scanner was superior to that of 39-ring scanner by approximately 10%. CV of 52-ring scanner using 3-min acquisition was equivalent to that of 39-ring scanner using 4-min acquisition.

![Figure 4](image)

FIGURE 4. Relative RC curves for PET images taken using a 10-min acquisition are shown in Figure 4. The RC curves for both systems were nearly identical. The effects of the PSF and TOF for image resolution were also identical, irrespective of the number of detector rings.

TABLE 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NECR (kcps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>52-ring high activity</td>
<td>115.9</td>
</tr>
<tr>
<td>52-ring low activity</td>
<td>59.0</td>
</tr>
<tr>
<td>39-ring high activity</td>
<td>72.0</td>
</tr>
<tr>
<td>39-ring low activity</td>
<td>37.8</td>
</tr>
</tbody>
</table>
can scan over a wide range at one time. Therefore, the number of bed positions required to scan from the mid thigh to the top of a patient using the 52-ring scanner was approximately 70% of that using the 39-ring scanner. Furthermore, the increase in sensitivity allowed for a 25% decrease in the acquisition time without compromising image quality. Thus, the total acquisition time for a multibed acquisition can be shortened to 53% \((0.7 \times 0.75 = 0.53)\) for the 52-ring scanner.

In this study, we evaluated the sensitivity, NECR, and CV of the phantom uniform area. The sensitivity evaluation was performed only among the NEMA NU-2 standard because we expect that the sensitivity was dependent on the number of detector rings. Further examinations to evaluate all units of the NEMA NU-2 standard are recommended.

CONCLUSION

The image quality of the 52-ring scanner is superior to that of the 39-ring scanner. Furthermore, the whole-body scanning time can be reduced by approximately 40% without compromising image quality. The spatial resolution was the same for both scanners. Thus, the obtained standardized uptake value is constant irrespective of the number of detector rings.

DISCLOSURE

No potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank the staff of the Department of Clinical Radiology and Medical Technology at Kyushu University Hospital and Saga University Hospital for their valuable clinical support.

REFERENCES